Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 12: 716671, 2021.
Article in English | MEDLINE | ID: mdl-34484079

ABSTRACT

Human language is inherently embodied and grounded in sensorimotor representations of the self and the world around it. This suggests that the body schema and ideomotor action-effect associations play an important role in language understanding, language generation, and verbal/physical interaction with others. There are computational models that focus purely on non-verbal interaction between humans and robots, and there are computational models for dialog systems that focus only on verbal interaction. However, there is a lack of research that integrates these approaches. We hypothesize that the development of computational models of the self is very appropriate for considering joint verbal and physical interaction. Therefore, they provide the substantial potential to foster the psychological and cognitive understanding of language grounding, and they have significant potential to improve human-robot interaction methods and applications. This review is a first step toward developing models of the self that integrate verbal and non-verbal communication. To this end, we first analyze the relevant findings and mechanisms for language grounding in the psychological and cognitive literature on ideomotor theory. Second, we identify the existing computational methods that implement physical decision-making and verbal interaction. As a result, we outline how the current computational methods can be used to create advanced computational interaction models that integrate language grounding with body schemas and self-representations.

2.
Front Robot AI ; 6: 123, 2019.
Article in English | MEDLINE | ID: mdl-33501138

ABSTRACT

Reinforcement learning is generally accepted to be an appropriate and successful method to learn robot control. Symbolic action planning is useful to resolve causal dependencies and to break a causally complex problem down into a sequence of simpler high-level actions. A problem with the integration of both approaches is that action planning is based on discrete high-level action- and state spaces, whereas reinforcement learning is usually driven by a continuous reward function. Recent advances in model-free reinforcement learning, specifically, universal value function approximators and hindsight experience replay, have focused on goal-independent methods based on sparse rewards that are only given at the end of a rollout, and only if the goal has been fully achieved. In this article, we build on these novel methods to facilitate the integration of action planning with model-free reinforcement learning. Specifically, the paper demonstrates how the reward-sparsity can serve as a bridge between the high-level and low-level state- and action spaces. As a result, we demonstrate that the integrated method is able to solve robotic tasks that involve non-trivial causal dependencies under noisy conditions, exploiting both data and knowledge.

3.
Front Robot AI ; 5: 22, 2018.
Article in English | MEDLINE | ID: mdl-33500909

ABSTRACT

Generating complex, human-like behavior in a humanoid robot like the iCub requires the integration of a wide range of open source components and a scalable cognitive architecture. Hence, we present the iCub-HRI library which provides convenience wrappers for components related to perception (object recognition, agent tracking, speech recognition, and touch detection), object manipulation (basic and complex motor actions), and social interaction (speech synthesis and joint attention) exposed as a C++ library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In addition to previously integrated components, the library allows for simple extension to new components and rapid prototyping by adapting to changes in interfaces between components. We also provide a set of modules which make use of the library, such as a high-level knowledge acquisition module and an action recognition module. The proposed architecture has been successfully employed for a complex human-robot interaction scenario involving the acquisition of language capabilities, execution of goal-oriented behavior and expression of a verbal narrative of the robot's experience in the world. Accompanying this paper is a tutorial which allows a subset of this interaction to be reproduced. The architecture is aimed at researchers familiarizing themselves with the iCub ecosystem, as well as expert users, and we expect the library to be widely used in the iCub community.

SELECTION OF CITATIONS
SEARCH DETAIL
...