Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 32(7-8): 555-567, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29654059

ABSTRACT

Although peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5' cap of target transcripts. Results from RNA sequencing demonstrate that the PGC-1α CBM promotes RNA synthesis from promyogenic genes. Our findings reveal a new conduit between DNA-associated and RNA-associated proteins that functions in a cap-binding protein surveillance mechanism, without which efficient differentiation of myoblasts to myotubes fails to occur.


Subject(s)
Nuclear Cap-Binding Protein Complex/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcriptional Activation , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Differentiation , Humans , MCF-7 Cells , Mice , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Caps/metabolism , RNA-Binding Proteins , Transcription, Genetic
2.
FEBS J ; 283(11): 2067-90, 2016 06.
Article in English | MEDLINE | ID: mdl-27007913

ABSTRACT

UNLABELLED: Cyclotides are plant-derived, cyclic miniproteins with three interlocking disulfide bonds that have attracted great interests because of their excellent stability and potential as peptide therapeutics. In this study, we characterize the cyclotides of the medicinal plant Clitoria ternatea (butterfly pea) and investigate their biological activities. Using a combined proteomic and transcriptomic method, we identified 41 novel cyclotide sequences, which we named cliotides, making C. ternatea one of the richest cyclotide-producing plants to date. Selected members of the cationic cliotides display potent antibacterial activity specifically against Gram-negative bacteria with minimal inhibitory concentrations as low as 0.5 µm. Remarkably, they also possess prominent immunostimulating activity. At a concentration of 1 µm, cationic cliotides are capable of augmenting the secretion of various cytokines and chemokines in human monocytes at both resting and lipopolysaccharide-stimulated states. Chemokines such as macrophage inflammatory proteins 1α and 1ß, interferon γ-induced protein 10, interleukin 8 and tumor necrosis factor α were among the most upregulated with up to 129-fold increase in secretion level. These findings suggest cyclotides can serve as potential candidates for novel immunomodulating therapeutics. DATABASE: The protein sequences reported in this paper (cT13-cT21) are available in the UniProt Knowledgebase under the accession numbers C0HJS0, C0HJS1, C0HJS2, C0HJS3, C0HJS4, C0HJS5, C0HJS6, C0HJS7 and C0HJS8, respectively. The transcriptome data in this paper are available at the Sequence Read Archive database (NCBI) under accession number SRR1613316. The protein precursors reported in this paper (ctc13, ctc15, ctc17-ctc19, ctc21-ctc53) are available at GenBank under the accession numbers KT732712, KT732713, KT732714, KT732715, KT732716, KT732717, KT732718, KT732719, KT732720, KT732721, KT732722, KT732723, KT732724, KT732725, KT732726, KT732727, KT732728, KT732729, KT732730, KT732731, KT732732, KT732733, KT732734, KT732735, KT732736, KT732737, KT732738, KT732739, KT732740, KT732741, KT732742, KT732743, KT732744, KT732745, KT732746, KT732747, KT732748 and KT732749, respectively.


Subject(s)
Clitoria/genetics , Cyclotides/genetics , Plant Extracts/genetics , Plant Proteins/genetics , Anti-Bacterial Agents/therapeutic use , Clitoria/chemistry , Cyclotides/therapeutic use , Gram-Negative Bacteria/drug effects , Humans , Immunization , Molecular Sequence Data , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Proteins/biosynthesis , Plant Proteins/therapeutic use , Protein Precursors/genetics , Proteomics
3.
J Biol Chem ; 290(52): 31138-50, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26546678

ABSTRACT

Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1-As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics.


Subject(s)
Alstonia/chemistry , Antiviral Agents , Coronavirus Infections/drug therapy , Dengue Virus , Dengue , Glycoside Hydrolase Inhibitors , Infectious bronchitis virus/drug effects , Plant Proteins , Alstonia/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus Infections/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Infectious bronchitis virus/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Protein Structure, Tertiary , Vero Cells
4.
J Biol Chem ; 288(5): 3370-80, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23195955

ABSTRACT

Cyclotides are disulfide-rich macrocyclic peptides that display a wide range of bioactivities and represent an important group of plant defense peptide biologics. A few linear variants of cyclotides have recently been identified. They share a high sequence homology with cyclotides but are biosynthetically unable to cyclize from their precursors. All hitherto reported cyclotides and their acyclic variants were isolated from dicot plants of the Rubiaceae, Violaceae, Cucurbitaceae, and recently the Fabaceae and Solanaceae families. Although several cyclotide-like genes in the Poaceae family were known from the data mining of the National Center for Biotechnology Information (NCBI) nucleotide database, their expression at the protein level has yet to be proven. Here, we report the discovery and characterization of nine novel linear cyclotides, designated as panitides L1-9, from the Panicum laxum of the Poaceae family and provide the first evidence of linear cyclotides at the protein level in a monocot plant. Disulfide mapping of panitide L3 showed that it possesses a cystine knot arrangement similar to cyclotides. Several panitides were shown to be active against Escherichia coli and cytotoxic to HeLa cells. They also displayed a high stability against heat and proteolytic degradation. Oxidative folding of the disulfide-reduced panitide L1 showed that it can fold efficiently into its native form. The presence of linear cyclotides in both dicots and monocots suggests their ancient origin and existence before the divergence of these two groups of flowering plants. Moreover, the Poaceae family contains many important food crops, and our discovery may open up new avenues of research using cyclotides and their acyclic variants in crop protection.


Subject(s)
Cyclotides/genetics , Cyclotides/isolation & purification , Evolution, Molecular , Panicum/chemistry , Amino Acid Sequence , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Cell Death/drug effects , Cloning, Molecular , Cyclotides/chemistry , Cyclotides/pharmacology , DNA, Complementary/genetics , Databases, Protein , Disulfides/metabolism , Enzyme Stability/drug effects , Fungi/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , HeLa Cells , Hot Temperature , Humans , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Sequence Data , Oxidation-Reduction/drug effects , Protein Structure, Secondary
5.
J Biol Chem ; 287(21): 17598-17607, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22467870

ABSTRACT

Cyclotides are a new class of plant biologics that display a diverse range of bioactivities with therapeutic potentials. They possess an unusual end-to-end cyclic backbone combined with a cystine knot arrangement, making them exceptionally stable to heat, chemical and enzymatic degradation. Currently, >200 cyclotides have been discovered but only three naturally occurring linear variants (also known as uncyclotides) have been isolated. In this study, we report the discovery of 18 novel peptides, chassatides C1 to C18, composed of 14 new cyclotides and four uncyclotides from Chassalia chartacea (Rubiaceae family). Thus far, this is the largest number of uncyclotides being reported in a single species. Activity testing showed that the uncyclotides not only retain the effectiveness but also are the most potent chassatides in the assays for antimicrobial, cytotoxic, and hemolytic activities. Genetic characterization of novel chassatides revealed that they have the shortest precursors of all known cyclotides hitherto isolated, which represents a new class of cyclotide precursors. This is the first report of cyclotide genes in a second genus, the Chassalia, other than the Hedyotis (Oldenlandia) of the Rubiaceae family. In addition, we also report the characterization of two Met-oxidized derivatives of chassatides C2 and C11. The oxidation of Met residue causes loss of bioactivities, strengthening the importance of the hydrophobic patch for membrane interaction.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Cyclotides , Plant Proteins , Rubiaceae/chemistry , Rubiaceae/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Base Sequence , Cyclotides/chemistry , Cyclotides/genetics , Cyclotides/isolation & purification , Cyclotides/pharmacology , Methionine/chemistry , Molecular Sequence Data , Oxidation-Reduction , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/pharmacology
6.
J Biol Chem ; 286(27): 24275-87, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21596752

ABSTRACT

The tropical plant Clitoria ternatea is a member of the Fabaceae family well known for its medicinal values. Heat extraction of C. ternatea revealed that the bioactive fractions contained heat-stable cysteine-rich peptides (CRPs). The CRP family of A1b (Albumin-1 chain b/leginsulins), which is a linear cystine knot CRP, has been shown to present abundantly in the Fabaceae. In contrast, the cyclotide family, which also belongs to the cystine knot CRPs but with a cyclic structure, is commonly found in the Rubiaceae, Violaceae, and Cucurbitaceae families. In this study, we report the discovery of a panel of 15 heat-stable CRPs, of which 12 sequences (cliotide T1-T12) are novel. We show unambiguously that the cliotides are cyclotides and not A1bs, as determined by their sequence homology, disulfide connectivity, and membrane active properties indicated by their antimicrobial activities against Escherichia coli and cytotoxicities to HeLa cells. We also show that cliotides are prevalent in C. ternatea and are found in every plant tissue examined, including flowers, seeds, and nodules. In addition, we demonstrate that their precursors are chimeras, half from cyclotide and the other half from Albumin-1, with the cyclotide domain displacing the A1b domain in the precursor. Their chimeric structures likely originate from either horizontal gene transfer or convergent evolution in plant nuclear genomes, which are exceedingly rare events. Such atypical genetic arrangement also implies a different mechanism of biosynthetic processing of cyclotides in the Fabaceae and provides new understanding of their evolution in plants.


Subject(s)
Clitoria , Cyclotides , Evolution, Molecular , Plant Proteins , Protein Precursors , Amino Acid Sequence , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Clitoria/genetics , Clitoria/metabolism , Cyclotides/genetics , Cyclotides/metabolism , Cyclotides/pharmacology , Cytotoxins/genetics , Cytotoxins/metabolism , Cytotoxins/pharmacology , Escherichia coli/growth & development , Gene Transfer, Horizontal/physiology , Genome, Plant/physiology , HeLa Cells , Humans , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/pharmacology , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...