Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 24(18): e202300210, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37394623

ABSTRACT

In this study, the features of resistive random access memory (RRAM) employing a straightforward Cr/MAPbI3 /FTO three-layer structure have been examined and clarified. The device displays various resistance switching (RS) behavior at various sweep voltages between 0.5 and 5 V. The RS effect has a conversion in the direction of the SET and RESET processes during sweeping for a number of cycles at a specific voltage. The directional change of the RS processes corresponds to the dominant transition between the generation/recombination of iodide ion and vacancy in the MAPbI3 perovskite layer and the electrochemical metallization of the Cr electrode under the influence of an electric field, which results in the conductive filament (CF) formation/rupture. At each stage, these processes are controlled by specific charge conduction mechanisms, including Ohmic conduction, space-charge-limited conduction (SCLC), and variable-range hopping (VRH). By identifying the biased voltage and the quantity of voltage sweep cycles, one can take a new approach to control or modulate the pathways for effective charge transport. This new approach is made possible by an understanding of the RS characteristics and the corresponding mechanisms causing the variation of RS behavior in the structure.

2.
RSC Adv ; 11(35): 21560-21566, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478777

ABSTRACT

Electrolytes for dye-sensitized solar cells remain a challenge for large-scale production and commercialization, hindering the wide application of solar cells. We have developed two new electrolyte-based deep eutectic solvents using a mixture of choline chloride with urea and with ethylene glycol for dye-sensitized solar cells. The prominent features of the two deep eutectic solvent electrolytes are simple preparation for large-scale production with inexpensive, available, and nontoxic starting materials and biodegradability. The solar cell devices proceeded in a safe manner as the two deep eutectic solvents afforded low-cost technology and comparative conversion efficiency to a popular ionic liquid, namely 1-ethyl-3-methylimidazolium tetracyanoborate. Results showed that devices with choline chloride and urea electrolyte exhibited improved open circuit voltage values (V OC), while the ones with choline chloride and ethylene glycol showed an increase in the short circuit current (I sc). Characterization of the devices by electrochemical impedance spectroscopy helped explain the effects of their molecular structures on the enhancement of either V OC or I sc values. These new solvents expand the electrolyte choices for designing dye-sensitized solar cells, especially for the purpose of using low-cost and eco-friendly materials for massive production.

3.
RSC Adv ; 8(24): 13142-13147, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-35542508

ABSTRACT

Dye-sensitized Solar Cells (DSCs) based on ruthenium complex N719 as sensitizer have received much attention due to their affordability and high efficiency. However, their best performance is only achieved when using volatile organic solvents as electrolyte solutions, which are unstable under prolonged thermal stress. Thus, we developed a new series of 1-alkenyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids used as robust DSC electrolytes. These ionic liquids exhibit low viscosity, high conductivity, and thermal stability. The implementation of 1-but-3-enyl-3-methyl-imidazolium trifluoromethanesulfonate, [ButMIm]OTf, into DSCs gave the best photovoltaic performance. The results are fairly comparable to those reports for other popular ionic liquid electrolytes currently used in DSC field. An insightful discussion on the relationship between the structure of these new ionic liquids and the J-V characterization as well as electrochemical impedance measurement of DSCs will give more interesting information. The results are useful for large-scale outdoor application of DSCs.

4.
Article in English | MEDLINE | ID: mdl-22964242

ABSTRACT

Interactions between triiodide (I(3)(-)) and 4-tert-butylpyridine (4TBP) as postulated in dye-sensitized solar cells (DSC) are investigated by means of (13)C NMR and IR spectroscopy supported by DFT calculations. The charge transfer (CT) complex 4TBP·I(2) and potential salts such as (4TBP)(2)I(+), I(3)(-) were synthesized and characterized by IR and (13)C NMR spectroscopy. However, mixing (butyl)(4)N(+), I(3)(-) and 4TBP at concentrations comparable to those of the DSC solar cell did not lead to any reaction. Neither CT complexes nor cationic species like (4TBP)(2)I(+) were observed, judging from the (13)C NMR spectroscopic evidence. This questions the previously proposed formation of (4TBP)(2)I(+) in DSC cells.


Subject(s)
Coloring Agents/chemistry , Iodides/chemistry , Pyridines/chemistry , Coloring Agents/chemical synthesis , Iodides/chemical synthesis , Magnetic Resonance Spectroscopy , Pyridines/chemical synthesis , Solar Energy , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...