Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(57): 34387-34395, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514386

ABSTRACT

In this study, strontium is used as an alloying element for improving the pitting resistance of Mg-5Al-4Sn based alloys in an alkaline solution. Potentiodynamic polarization measurements suggest that the addition of strontium increases the robustness of the pitting resistance as a result of the higher pitting potential and wider range of passive potential. Electrochemical impedance spectroscopy (EIS) confirms the formation of a solid passive film on the alloy surface due to a significant increase in the passive film and the charge transfer resistance, as well as lower film and double layer constant phase element magnitude values. Additionally, the potentiostatic polarisation results also show a lower passive current density and passive film stability, resulting in an increase in the breakdown time when the amount of strontium added to the alloy increases from 0.0 to 1.0 wt%. Furthermore, the scanning electron microscopy results indicate that insignificant corrosion is observed on alloy specimens containing strontium, whereas there is fierce corrosion on alloy based surfaces. This robust corrosion resistance could be attributed to the α-grain reduction and refined precipitates at the alloy grain boundaries, resulting in promoted formation of the passive film which is formed from a mixture of magnesium, aluminum and tin oxides/hydroxides, as confirmed by the X-ray photoelectron spectroscopy results.

2.
Materials (Basel) ; 6(5): 1826-1839, 2013 May 07.
Article in English | MEDLINE | ID: mdl-28809245

ABSTRACT

In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu) composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu) reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2). Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu) composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...