Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 17(1): 52, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32028971

ABSTRACT

BACKGROUND: Microglia play a key role in neuronal circuit and synaptic maturation in the developing brain. In the healthy adult, however, their role is less clear: microglial hyperactivation in adults can be detrimental to memory due to excessive synaptic pruning, yet learning and memory can also be impaired in the absence of these cells. In this study, we therefore aimed to determine how microglia contribute to short-term memory in healthy adults. METHODS: To this end, we developed a Cx3cr1-Dtr transgenic Wistar rat with a diphtheria toxin receptor (Dtr) gene inserted into the fractalkine receptor (Cx3cr1) promoter, expressed on microglia and monocytes. This model allows acute microglial and monocyte ablation upon application of diphtheria toxin, enabling us to directly assess microglia's role in memory. RESULTS: Here, we show that short-term memory in the novel object and place recognition tasks is entirely unaffected by acute microglial ablation. However, when microglia repopulate the brain after depletion, learning and memory performance in these tasks is improved. This transitory memory enhancement is associated with an ameboid morphology in the newly repopulated microglial cells and increased astrocyte density that are linked with a higher density of mature hippocampal synaptic spines and differences in pre- and post-synaptic markers. CONCLUSIONS: These data indicate that glia play a complex role in the healthy adult animal in supporting appropriate learning and memory and that subtle changes to the function of these cells may strategically enhance memory.


Subject(s)
Brain/metabolism , CX3C Chemokine Receptor 1/metabolism , Memory, Short-Term/physiology , Microglia/metabolism , Monocytes/metabolism , Spatial Memory/physiology , Animals , CX3C Chemokine Receptor 1/genetics , Male , Promoter Regions, Genetic , Rats , Rats, Transgenic , Rats, Wistar
2.
Article in English | MEDLINE | ID: mdl-29123503

ABSTRACT

Neonatal overfeeding during the first weeks of life in male rats is associated with a disruption in the peripheral and central leptin systems. Neonatally overfed male rats have increased circulating leptin in the first 2 weeks of life, which corresponds to an increase in body weight compared to normally fed counterparts. These effects are associated with a short-term disruption in the connectivity of neuropeptide Y (NPY), agouti-related peptide (AgRP), and pro-opiomelanocortin (POMC) neurons within the regions of the hypothalamus responsible for control of energy balance and food intake. Female rats that are overfed during the first weeks of their life experience similar changes in circulating leptin levels as well as in their body weight. However, it has not yet been studied whether these metabolic changes are associated with the same central effects as observed in males. Here, we hypothesized that hyperleptinemia associated with neonatal overfeeding would lead to changes in central feeding circuitry in females as it does in males. We assessed hypothalamic NPY, AgRP, and POMC gene expression and immunoreactivity at 7, 12, or 14 days of age, as well as neuronal activation in response to exogenous leptin in neonatally overfed and control female rats. Neonatally overfed female rats were hyperleptinemic and were heavier than controls. However, these metabolic changes were not mirrored centrally by changes in hypothalamic NPY, AGRP, and POMC fiber density. These findings are suggestive of sex differences in the effects of neonatal overfeeding and of differences in the ability of the female and male central systems to respond to changes in the early life nutritional environment.

3.
J Endocrinol ; 234(1): 41-56, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28455431

ABSTRACT

Early life diet influences metabolic programming, increasing the risk for long-lasting metabolic ill health. Neonatally overfed rats have an early increase in leptin that is maintained long term and is associated with a corresponding elevation in body weight. However, the immediate and long-term effects of neonatal overfeeding on hypothalamic anorexigenic pro-opiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) circuitry, and if these are directly mediated by leptin, have not yet been examined. Here, we examined the effects of neonatal overfeeding on leptin-mediated development of hypothalamic POMC and AgRP/NPY neurons and whether these effects can be normalised by neonatal leptin antagonism in male Wistar rats. Neonatal overfeeding led to an acute (neonatal) resistance of hypothalamic neurons to exogenous leptin, but this leptin resistance was resolved by adulthood. While there were no effects of neonatal overfeeding on POMC immunoreactivity in neonates or adults, the neonatal overfeeding-induced early increase in arcuate nucleus (ARC) AgRP/NPY fibres was reversed by adulthood so that neonatally overfed adults had reduced NPY immunoreactivity in the ARC compared with controls, with no further differences in AgRP immunoreactivity. Short-term neonatal leptin antagonism did not reverse the excess body weight or hyperleptinaemia in the neonatally overfed, suggesting factors other than leptin may also contribute to the phenotype. Our findings show that changes in the availability of leptin during early life period influence the development of hypothalamic connectivity short term, but this is partly resolved by adulthood indicating an adaptation to the metabolic mal-programming effects of neonatal overfeeding.


Subject(s)
Animals, Newborn/physiology , Diet , Hypothalamus/physiology , Leptin/physiology , Overnutrition , Agouti-Related Protein/analysis , Agouti-Related Protein/physiology , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Drug Resistance , Female , Hypothalamus/chemistry , Leptin/antagonists & inhibitors , Leptin/pharmacology , Litter Size , Male , Neurons/physiology , Neuropeptide Y/analysis , Neuropeptide Y/physiology , Pro-Opiomelanocortin/analysis , Pro-Opiomelanocortin/physiology , Rats , Rats, Wistar
4.
Neuropharmacology ; 113(Pt A): 21-30, 2017 02.
Article in English | MEDLINE | ID: mdl-27671325

ABSTRACT

Early life overweight is a significant risk factor for developmental programming of adult obesity due to changes in the availability of metabolic factors crucial for the maturation of brain appetite-regulatory circuitry. The appetite-stimulating hormone, ghrelin, has been recently identified as a major regulator of the establishment of hypothalamic feeding pathways. Ghrelin exists in circulation in two major forms, as acylated and des-acylated ghrelin. While most research has focused on acyl ghrelin, the role of neonatal des-acyl ghrelin in metabolic programming is currently unknown. Here we assessed the influences of early life overfeeding on the ghrelin system, including acyl and des-acyl ghrelin's ability to access the hypothalamus in male rats. Our data show that early life overfeeding influences the ghrelin system short-term, leading to an acute reduction in circulating des-acyl ghrelin and increased expression of the growth hormone secretagogue receptor (GHSR) in the arcuate nucleus of the hypothalamus (ARC). These changes are associated with increased neuronal activation in response to exogenous acyl, but not des-acyl, ghrelin in the ARC and the paraventricular nucleus of the hypothalamus (PVN). Interestingly, while we observed no differences in the accessibility of the ARC to acyl or des-acyl ghrelin, less exogenous acyl ghrelin reaches the PVN in the neonatally overfed. Importantly, the influences of neonatal overfeeding on the ghrelin system were not maintained into adulthood. Therefore, while early life overfeeding results in excess body weight and stimulates acute changes in the brain's sensitivity to metabolic signals, this developmental mal-programming is at least partially alleviated in adulthood.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior/physiology , Ghrelin/metabolism , Hyperphagia/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Acyltransferases/metabolism , Agouti-Related Protein/metabolism , Animals , Animals, Newborn , Body Weight , Ghrelin/blood , Male , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , Rats , Rats, Wistar , Receptors, Ghrelin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...