Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Microbiol ; 73(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38235783

ABSTRACT

Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Vaccines , Humans , Male , Female , Mice , Animals , Helicobacter Infections/microbiology , Mice, Inbred C57BL , Mice, Inbred ICR , Genotype , Genomics , Asia, Southeastern/epidemiology
2.
Open Vet J ; 10(2): 189-197, 2020 08.
Article in English | MEDLINE | ID: mdl-32821663

ABSTRACT

Background: The first confirmed case of African swine fever (ASF) in Vietnam was reported officially in February 2019. To date, ASF virus (ASFV) have been detected in 63/63 provinces in Vietnam. Currently, real-time polymerase chain reaction (PCR) is considered to be a powerful tool for viral detection in field samples, including ASFV. However, some recent reports have suggested that mismatches in primer and probe binding regions may directly affect real-time PCR qualification, leading a false-negative result. Aim: This study aims to further examine a conflicting result obtained from two OIE recommended methods, conventional PCR and real-time PCR, for ASFV detection. Methods: Two ASF suspected pigs from different provinces in the north of Vietnam were selected for this study based on clinical signs and postmortem lesions. The different results obtained by OIE-recommended conventional PCR and real-time PCR were further analyzed by the Sanger sequencing method and virus isolation in combination with hemadsorption (HAD) test using porcine alveolar macrophages cells. Results: The results showed that when the primer sequence matched perfectly with the sequences of field isolates, a mutation in probe binding region was found, indicating that a single mismatch in the probe binding site may cause a false-negative result by real-time PCR in detecting ASFV in clinical samples in Vietnam. An agreement between conventional PCR, using PPA1/PPA2 primers and two golden standard methods, virus isolation in combination with HAD assay, and sequencing method was observed in this study. Conclusion: A single mismatch in the probe binding site caused a failse-negative result by realtime PCR method in field diagnosis of ASFV. The needs consideration when selecting the appropriate molecular diagnostic methods is based on the current databases of ASFV sequences, particularly for epidemiological surveillance of ASF.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , African Swine Fever/pathology , African Swine Fever/virology , African Swine Fever Virus/genetics , Animals , False Negative Reactions , Macrophages, Alveolar/virology , Molecular Diagnostic Techniques/veterinary , Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Swine , Vietnam
3.
J Vet Res ; 64(2): 207-213, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32587906

ABSTRACT

INTRODUCTION: African swine fever (ASF) was officially reported in Vietnam in February 2019 and spread across the whole country, affecting all 63 provinces and cities. MATERIAL AND METHODS: In this study, ASF virus (ASFV) VN/Pig/HaNam/2019 (VN/Pig/HN/19) strain was isolated in primary porcine alveolar macrophage (PAM) cells from a sample originating from an outbreak farm in Vietnam's Red River Delta region. The isolate was characterised using the haemadsorption (HAD) test, real-time PCR, and sequencing. The activity of antimicrobial feed products was evaluated via a contaminated ASFV feed assay. RESULTS: Phylogenetic analysis of the viral p72 and EP402R genes placed VN/Pig/HN/19 in genotype II and serogroup 8 and related it closely to Eastern European and Chinese strains. Infectious titres of the virus propagated in primary PAMs were 106 HAD50/ml. Our study reports the activity against ASFV VN/Pig/HN/19 strain of antimicrobial Sal CURB RM E Liquid, F2 Dry and K2 Liquid. Our feed assay findings suggest that the antimicrobial RM E Liquid has a strong effect against ASFV replication. These results suggest that among the Sal CURB products, the antimicrobial RM E Liquid may have the most potential as a mitigant feed additive for ASFV infection. Therefore, further studies on the use of antimicrobial Sal CURB RM E Liquid in vivo are required. CONCLUSIONS: Our study demonstrates the threat of ASFV and emphasises the need to control and eradicate it in Vietnam by multiple measures.

SELECTION OF CITATIONS
SEARCH DETAIL
...