Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 37(1): 36-48, 2021 01.
Article in English | MEDLINE | ID: mdl-33487051

ABSTRACT

This study is focused on the development of tougher gels using combinations of acrylamide, fluoromethacrylate and a non-isocyanate urethane dimethacrylate (NIUDMA) crosslinker. The NIUDMA was tailored with 2, 3-epoxypropoxy propyl-polydimethylsiloxane segments E9 (MW = 0.36 kg mol-1), E11 (MW = 0.5-0.6 kg mol-1) and E12 (MW = 1-1.4 kg mol-1). A 3 level Taguchi design was used to evaluate the role of each component of the ternary copolymer gel on the elastic modulus and toughness. The toughness ranged from 2.5-7 MJ m-3 whereas the modulus ranged from 27-70 MPa. The formulations with the highest toughness and modulus were screened for their antifouling potential in biological assays against the microalga Navicula incerta and the bacterium Cellulophaga lytica. The E9 gels showed the best performance, achieving a 73% reduction in N. incerta cells and a 92% reduction in C. lytica biofilm remaining after water jetting treatments, when compared with the commercial Intersleek product IS700.


Subject(s)
Acrylamide , Isocyanates , Flavobacteriaceae , Methacrylates , Polyurethanes
2.
Sci Total Environ ; 699: 134267, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31677468

ABSTRACT

In the Red River Delta, Vietnam, arsenic (As) contamination of groundwater is a serious problem where more than seventeen million people are affected. Millions of people in this area are unable to access clean water from the existing centralized water treatment systems. They also cannot afford to buy expensive household water filters. Similar dangerous situations exist in many other countries and for this reason there is an urgent need to develop a cost-effective decentralized filtration system using new low-cost adsorbents for removing arsenic. In this study, seven locally available low-cost materials were tested for arsenic removal by conducting batch adsorption experiments. Of these materials, a natural laterite (48.7% Fe2O3 and 18.2% Al2O3) from Thach That (NLTT) was deemed the most suitable adsorbent based on arsenic removal performance, local availability, stability/low risk and cost (US$ 0.10/kg). Results demonstrated that the adsorption process was less dependent on the solution pH from 2.0 to 10. The coexisting anions competed with As(III) and As(V) in the order, phosphate > silicate > bicarbonate > sulphate > chloride. The adsorption process reached a fast equilibrium at approximately 120-360 min, depending on the initial arsenic concentrations. The Langmuir maximum adsorption capacities of NLTT at 30 °C were 512 µg/g for As(III) and 580 µg/g for As(V), respectively. Thermodynamic study conducted at 10 °C, 30 °C, and 50 °C suggested that the adsorption process of As(III) and As(V) was spontaneous and endothermic in nature. A water filtration system packed with NLTT was tested in a childcare centre in the most disadvantaged community in Ha Nam province, Vietnam, to determine arsenic removal performance in an operation lasting six months. Findings showed that the system reduced total arsenic concentration in groundwater from 122 to 237 µg/L to below the Vietnam drinking water standard of 10 µg/L.


Subject(s)
Arsenic/analysis , Filtration/economics , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Groundwater , Vietnam
3.
J Hazard Mater ; 186(2-3): 1384-91, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21227580

ABSTRACT

This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg(-1) dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).


Subject(s)
Lead , Metals/analysis , Mining , Plants/metabolism , Zinc , Arsenic/analysis , Environmental Pollution/analysis , Environmental Restoration and Remediation , Indicators and Reagents , Metals, Heavy/analysis , Plants/chemistry , Soil Pollutants/analysis , Species Specificity , Vietnam , Water Pollutants, Chemical/analysis
4.
Chem Commun (Camb) ; (8): 947-9, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19214325

ABSTRACT

Oxidative carbonylation of amines using NaIO(4) as the oxidant and NaI as a promoter affords good to excellent yields of ureas from primary amines in the absence of transition metal catalysts.


Subject(s)
Amines/chemistry , Periodic Acid/chemistry , Urea/chemical synthesis , Molecular Structure , Oxidation-Reduction , Sodium Iodide/chemistry , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...