Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(39): 13897-13907, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37738086

ABSTRACT

It is essential to develop novel catalysts with high catalytic activity, strong durability, and good stability for further application in methanol fuel cells. In this work, we present for the first time the effect of the chemical functional groups (thiol and amine) with different electron affinity in reduced graphene oxide supports on the morphology and catalytic activity of platinum nanoparticles for the methanol oxidation reaction. Hydroxyl groups on graphene oxide were initially brominated and then transformed to the desired functional groups. The good dispersion of metal nanoparticles over functionalized carbon substrates (particle size less than 5 nm) with good durability, even at a limited functionalization degree (less than 7%) has been demonstrated by morphological and structural studies. The durability of the catalysts was much improved via strong coordination between the metal and nitrogen or sulfur atoms. Impressively, the catalytic activity of platinum nanoparticles on aminated reduced graphene oxide was found to be much better than that on thiolated graphene oxide despite the weaker affinity between amine and noble metals. These findings support further developing new graphene derivatives with the desired functionalization for electronics and energy applications..

2.
RSC Adv ; 11(46): 28573-28580, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478552

ABSTRACT

Graphene sheets decorated with nickel or copper oxides that were anchored on polyaniline (denoted as PANI-graphene/NiO and PANI-graphene/CuO) were prepared by a simple, easy to-control electrochemical method and applied as novel materials for sensitive and selective methanol sensing. The fabricated sensors exhibited good electrocatalytic activity, appropriate dynamic linear range (20-1300 mM), sensitivity (0.2-1.5 µA mM-1 cm-2) and excellent selectivity towards methanol. It should be highlighted from the selectivity tests that no significant interference was observed from ethanol and other alcohols. To our best knowledge, using inexpensive but efficient transition metals like Ni, Cu instead of Pt, Pd and their composites with PANI, graphene would be scientifically novel and practically feasible approach for sensor fabrication that could be potentially used to identify methanol adulteration in counterfeit alcoholic beverages.

SELECTION OF CITATIONS
SEARCH DETAIL
...