Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(31): 28733-28748, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576624

ABSTRACT

Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 µg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 µg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.

2.
R Soc Open Sci ; 9(9): 220659, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36147940

ABSTRACT

In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.

3.
RSC Adv ; 10(35): 20543-20551, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517717

ABSTRACT

In order to explore and develop new anticancer agents, three series of 2-phenylbenzimidazoles, 15-46, were condensed under simple and mild conditions using sodium metabisulfite as an oxidation agent and another series, 47-55, were obtained via a reduction reaction using sodium borohydride. All the compounds synthesized were evaluated for their in vitro anticancer activities against three human cancer cell lines. The novel compound 38 was found to be the most potent multi cancer inhibitor against A549, MDA-MB-231, and PC3 cell lines (IC50 values 4.47, 4.68 and 5.50 µg mL-1, respectively). In addition, compound 40 exhibited the best IC50 value of 3.55 µg mL-1 against the MDA-MB-231 cell line. The results demonstrated that introducing a new substituent to compounds 37-55 could improve their antiproliferative activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...