Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 257: 119345, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851370

ABSTRACT

The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.

2.
Article in English | MEDLINE | ID: mdl-37107732

ABSTRACT

Air traffic bans in response to the spread of the coronavirus have changed the sound situation of urban areas around airports. This study aimed to investigate the effect of this unprecedented event on the community response to noise before and after the international flight operation at Tan Son Nhat Airport (TSN) in March 2020. The "before" survey was conducted in August 2019, and the two "after" surveys were conducted in June and September 2020. Structural equation models (SEMs) for noise annoyance and insomnia were developed by linking the questionnaire items of the social surveys. The first effort aimed to achieve a common model of noise annoyance and insomnia, corresponding to the situation before and after the change, respectively. Approximately, 1200 responses were obtained from surveys conducted in 12 residential areas around TSN in 2019 and 2020. The average daily flight numbers observed in August 2019 during the two surveys conducted in 2020 were 728, 413, and 299, respectively. The sound pressure levels of the 12 sites around TSN decreased from 45-81 dB (mean = 64, SD = 9.8) in 2019 to 41-76 dB (mean = 60, SD = 9.8) and 41-73 dB (mean = 59, SD = 9.3) in June and September 2020, respectively. The SEM indicated that the residents' health was related to increased annoyance and insomnia.


Subject(s)
Aviation , Noise, Transportation , Sleep Initiation and Maintenance Disorders , Humans , Airports , Sleep Initiation and Maintenance Disorders/epidemiology , Nuclear Family , Aircraft , Environmental Exposure
SELECTION OF CITATIONS
SEARCH DETAIL
...