Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 440, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778295

ABSTRACT

BACKGROUND: Exploring the relationship between parasitic plants and answering taxonomic questions is still challenging. The subtribe Scurrulinae (Loranthaceae), which has a wide distribution in Asia and Africa, provides an excellent example to illuminate this scenario. Using a comprehensive taxon sampling of the subtribe, this study focuses on infer the phylogenetic relationships within Scurrulinae, investigate the phylogeny and biogeography of the subtribe, and establish a phylogenetically-based classification incorporating both molecular and morphological evidence. We conducted phylogenetic, historical biogeography, and ancestral character state reconstruction analyses of Scurrulinae based on the sequences of six DNA regions from 89 individuals to represent all five tribes of the Loranthaceae and the dataset from eleven morphological characters. RESULTS: The results strongly support the non-monophyletic of Scurrulinae, with Phyllodesmis recognized as a separate genus from its allies Taxillus and Scurrula based on the results from molecular data and morphological character reconstruction. The mistletoe Scurrulinae originated in Asia during the Oligocene. Scurrulinae was inferred to have been widespread in Asia but did not disperse to other areas. The African species of Taxillus, T. wiensii, was confirmed to have originated in Africa from African Loranthaceae ca. 17 Ma, and evolved independently from Asian members of Taxillus. CONCLUSIONS: This study based on comprehensive taxon sampling of the subtribe Scurrulinae, strongly supports the relationship between genera. The taxonomic treatment for Phyllodesmis was provided. The historical biogeography of mistletoe Scurrulinae was determined with origin in Asia during the Oligocene. Taxillus and Scurrula diverged during the climatic optimum in the middle Miocene. Taxillus wiensii originated in Africa from African Loranthaceae, and is an independent lineage from the Asian species of Taxillus. Diversification of Scurrulinae and the development of endemic species in Asia may have been supported by the fast-changing climate, including cooling, drying, and the progressive uplift of the high mountains in central Asia, especially during the late Pliocene and Pleistocene.


Subject(s)
Loranthaceae , Phylogeny , Phylogeography , Loranthaceae/genetics , Africa , Asia , Biological Evolution , DNA, Plant/genetics , Evolution, Molecular , Sequence Analysis, DNA
2.
Micromachines (Basel) ; 15(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38398914

ABSTRACT

Compared to other actuating methods, acoustic actuators offer the distinctive capability of the contactless manipulation of small objects, such as microscale and nanoscale robots. Furthermore, they have the ability to penetrate the skin, allowing for the trapping and manipulation of micro/nanorobots that carry therapeutic agents in diverse media. In this review, we summarize the current progress in using acoustic actuators for the manipulation of micro/nanorobots used in various biomedical applications. First, we introduce the actuating method of using acoustic waves to manipulate objects, including the principle of operation and different types of acoustic actuators that are usually employed. Then, applications involving manipulating different types of devices are reviewed, including bubble-based microrobots, bubble-free robots, biohybrid microrobots, and nanorobots. Finally, we discuss the challenges and future perspectives for the development of the field.

3.
Biomimetics (Basel) ; 8(7)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37999194

ABSTRACT

Macrophages, which are part of the mononuclear phagocytic system, possess sensory receptors that enable them to target cancer cells. In addition, they are able to engulf large amounts of particles through phagocytosis, suggesting a potential "Trojan horse" drug delivery approach to tumors by facilitating the engulfment of drug-hidden particles by macrophages. Recent research has focused on the development of macrophage-based microrobots for anticancer therapy, showing promising results and potential for clinical applications. In this review, we summarize the recent development of macrophage-based microrobot research for anticancer therapy. First, we discuss the types of macrophage cells used in the development of these microrobots, the common payloads they carry, and various targeting strategies utilized to guide the microrobots to cancer sites, such as biological, chemical, acoustic, and magnetic actuations. Subsequently, we analyze the applications of these microrobots in different cancer treatment modalities, including photothermal therapy, chemotherapy, immunotherapy, and various synergistic combination therapies. Finally, we present future outlooks for the development of macrophage-based microrobots.

4.
Micromachines (Basel) ; 13(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557481

ABSTRACT

The ultrasonic actuator can be used in medical applications because it is label-free, biocompatible, and has a demonstrated history of safe operation. Therefore, there is an increasing interest in using an ultrasonic actuator in the non-contact manipulation of micromachines in various materials and sizes for therapeutic applications. This research aims to design, fabricate, and characterize a single-sided transducer array with 56 channels operating at 500 kHz, which provide benefits in the penetration of tissue. The fabricated transducer is calibrated using a phase reference calibration method to reduce position misalignment and phase discrepancies caused by acoustic interaction. The acoustic fields generated by the transducer array are measured in a 300 mm × 300 mm × 300 mm container filled with de-ionized water. A hydrophone is used to measure the far field in each transducer array element, and the 3D holographic pattern is analyzed based on the scanned acoustic pressure fields. Next, the phase reference calibration is applied to each transducer in the ultrasonic actuator. As a result, the homogeneity of the acoustic pressure fields surrounding the foci area is improved, and the maximum pressure is also increased in the twin trap. Finally, we demonstrate the capability to trap and manipulate micromachines with acoustic power by generating a twin trap using both optical camera and ultrasound imaging systems in a water medium. This work not only provides a comprehensive study on acoustic actuators but also inspires the next generation to use acoustics in medical applications.

5.
Pharmaceutics ; 14(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36365211

ABSTRACT

The use of untethered microrobots for precise synergistic anticancer drug delivery and controlled release has attracted attention over the past decade. A high surface area of the microrobot is desirable to achieve greater therapeutic effect by increasing the drug load. Therefore, various nano- or microporous microrobot structures have been developed to load more drugs. However, as most porous structures are not interconnected deep inside, the drug-loading efficiency may be reduced. Here, we propose a magnetically guided helical microrobot with a Gyroid surface for high drug-loading efficiency and precise drug delivery. All spaces inside the proposed microrobot are interconnected, thereby enabling drug loading deep inside the structure. Moreover, we introduce gold nanostars on the microrobot structure for near-infrared-induced photothermal therapy and triggering drug release. The results of this study encourage further exploration of a high loading efficiency in cell-based therapeutics, such as stem cells or immune cells, for microrobot-based drug-delivery systems.

6.
RSC Adv ; 12(40): 26383-26389, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36275085

ABSTRACT

Copper chalcogenide Cu2(Se,Te) compounds are well known as typical p-type thermoelectric materials with a figure of merit (ZT) that can be optimized by the ratio of Se : Te. Here, by using the mechanical alloying and solid-state reaction methods, Te was substituted into Se sites within Cu2Se as the formula Cu2Se1-x Te x (x = 0.1, 0.2, 0.25, and 0.3). The observed changes in structural phase, grain morphologies, and grain size were recorded by XRD and FE-SEM imaging with the appearance of the secondary phase of Cu2Te, with a Te content of x = 0.25. The layered structure morphology was observed more clearly at the high Te content. The electrical conductivity was greatly increased with enriched Te content while the maximum Seebeck coefficient was obtained in the Cu2Se0.75Te0.25 sample. Accordingly, a power factor value of up to 9.84 µW cm-1 K-2 at 773 K was achieved. The appearance of a Cu2Te phase with a Te content of 0.25 created a structural phase transition which results in a ZT value of 1.35 at 773 K in the Cu2Se0.75Te0.25 sample.

7.
Pharmaceutics ; 14(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36297578

ABSTRACT

Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 µm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.

8.
Drug Deliv ; 29(1): 2621-2631, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35941835

ABSTRACT

Colorectal cancer remains one of the main causes of cancer-related deaths worldwide. Although numerous nanomedicine formulations have been developed to tackle the disease, their low selectivity still limits effective therapeutic outcomes. In this study, we isolated extracellular vesicles (EVs) from CT26 colorectal cancer cells and 4T1 murine mammary carcinoma cells, loaded them with the chemotherapeutic agent (doxorubicin, DOX). Then we evaluated the cellular uptake of the extracellular vesicles both in 2D monolayer and 3D tumor spheroid setups using confocal laser scanning microscope and flow cytometry. In vivo tumor homing of the extracellular vesicles was verified on CT26 tumor bearing BALB/c mice using in vivo imaging system. Finally, in vivo therapeutic effects were evaluated and compared using the same animal models treated with five doses of EV formulations. CT26-EV-DOX exhibited excellent biocompatibility, a high drug-loading capacity, controlled drug release behavior, and a high capability for targeting colorectal cancer cells. In particular, we verified that CT26-EV-DOX could preferentially be up taken by their parent cells and could effectively target and penetrate 3D tumor spheroids resembling colorectal tumors in vivo in comparison with their 4T1 derived EV partner. Additionally, treatment of colorectal tumor-bearing BALB/c mice with of CT26-EV-DOX significantly inhibited the growth of the tumors during the treatment course. The developed CT26-EV-DOX nanoparticles may present a novel and effective strategy for the treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Nanoparticles , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Mice , Mice, Inbred BALB C
9.
Pharmaceutics ; 14(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35890382

ABSTRACT

Acoustic tweezers provide unique capabilities in medical applications, such as contactless manipulation of small objects (e.g., cells, compounds or living things), from nanometer-sized extracellular vesicles to centimeter-scale structures. Additionally, they are capable of being transmitted through the skin to trap and manipulate drug carriers in various media. However, these capabilities are hindered by the limitation of controllable degrees of freedom (DoFs) or are limited maneuverability. In this study, we explore the potential application of acoustical tweezers by presenting a five-DoF contactless manipulation acoustic system (AcoMan). The system has 30 ultrasound transducers (UTs) with single-side arrangement that generates active traveling waves to control the position and orientation of a fully untethered nanocarrier clusters (NCs) in a spherical workspace in water capable of three DoFs translation and two DoFs rotation. In this method, we use a phase modulation algorithm to independently control the phase signal for 30 UTs and manipulate the NCs' positions. Phase modulation and switching power supply for each UT are employed to rotate the NCs in the horizontal plane and control the amplitude of power supply to each UT to rotate the NCs in the vertical plane. The feasibility of the method is demonstrated by in vitro and ex vivo experiments using porcine ribs. A significant portion of this study could advance the therapeutic application such a system as targeted drug delivery.

10.
Polymers (Basel) ; 14(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35808759

ABSTRACT

Several recent advances have emerged in biotherapy and the development of personal drugs. However, studies exploring effective manufacturing methods of personal drugs remain limited. In this study, solid drugs based on poly(ethylene glycol)diacrylate (PEGDA) hydrogel and doxorubicin were fabricated, and their final geometry was varied through UV-light patterning. The results suggested that the final drug concentration was affected by the geometrical volume as well as the UV-light exposure time. The analysis of PEGDA showed no effect on the surrounding cells, indicating its high biocompatibility. However, with the addition of doxorubicin, it showed an excellent therapeutic effect, indicating that drugs inside the PEGDA structure could be successfully released. This approach enables personal drugs to be fabricated in a simple, fast, and uniform manner, with perfectly tuned geometry.

11.
J Mater Chem B ; 10(23): 4509-4518, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35616358

ABSTRACT

Stomach cancer is a global health concern as millions of cases are reported each year. In the present study, we developed a pH-responsive microrobot with good biocompatibility, magnetic-field controlled movements, and the ability to be visualized via X-ray imaging. The microrobot consisted of composite resin and a pH-responsive layer. This microrobot was found to fold itself in high pH environments and unfold itself in low pH environments. In addition, the neodymium (NdFeB) magnetic nanoparticles present inside the composite resin provided the microrobot with an ability to be controlled by a magnetic field through an electromagnetic actuation system, and the monomeric triiodobenzoate-based particles were found to act as contrast agents for real-time X-ray imaging. The doxorubicin coating on the microrobot's surface resulted in a high cancer-cell killing effect. Finally, we demonstrated the proposed microrobot under an ex vivo environment using a pig's stomach. Thus, this approach can be a potential alternative to targeted drug carriers, especially for stomach cancer applications.


Subject(s)
Stomach Neoplasms , Composite Resins , Doxorubicin/pharmacology , Humans , Magnetics , Stomach Neoplasms/diagnostic imaging , X-Rays
12.
ACS Nano ; 15(5): 8492-8506, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33973786

ABSTRACT

Macrophages (MΦs) have the capability to sense chemotactic cues and to home tumors, therefore presenting a great approach to engineer these cells to deliver therapeutic agents to treat diseases. However, current cell-based drug delivery systems usually use commercial cell lines that may elicit an immune response when injected into a host animal. Furthermore, premature off-target drug release also remains an enormous challenge. Here, we isolated and differentiated MΦs from the spleens of BALB/c mice and developed dual-targeting MΦ-based microrobots, regulated by chemotaxis and an external magnetic field, and had a precise spatiotemporal controlled drug release at the tumor sites in response to the NIR laser irradiation. These microrobots were prepared by coloading citric acid (CA)-coated superparamagnetic nanoparticles (MNPs) and doxorubicin (DOX)-containing thermosensitive nanoliposomes (TSLPs) into the MΦs. CA-MNPs promoted a magnetic targeting function to the microrobots and also permitted photothermal heating in response to the NIR irradiation, triggering drug release from TSLPs. In vitro experiments showed that the microrobots effectively infiltrated tumors in 3D breast cancer tumor spheroids, particularly in the presence of the magnetic field, and effectively induced tumor cell death, further enhanced by the NIR laser irradiation. In vivo experiments confirmed that the application of the magnetic field and NIR laser could markedly inhibit the growth of tumors with a subtherapeutic dose of DOX and a single injection of the microrobots. In summary, the study proposes a strategy for the effective anticancer treatment using the developed microrobots.


Subject(s)
Doxorubicin , Nanoparticles , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Liberation , Macrophages , Mice , Mice, Inbred BALB C , Phototherapy
13.
ACS Appl Mater Interfaces ; 12(9): 10130-10141, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32041404

ABSTRACT

Although great efforts have been undertaken to develop a nanoparticle-based drug delivery system (DDS) for the treatment of solid tumors, the therapeutic outcomes are still limited. Immune cells, which possess an intrinsic ability to phagocytose nanoparticles and are recruited by tumors, can be exploited to deliver nanotherapeutics deep inside the tumors. Photothermal therapy using near-infrared light is a promising noninvasive approach for solid tumor ablation, especially when combined with chemotherapy. In this study, we design and evaluate a macrophage-based, multiple nanotherapeutics DDS, involving the phagocytosis by macrophages of both small-sized gold nanorods and anticancer drug-containing nanoliposomes. The aim is to treat solid tumors, utilizing the tumor-infiltrating properties of macrophages with synergistic photothermal-chemotherapy. Using a 3D cancer spheroid as an in vitro solid tumor model, we show that tumor penetration and coverage of the nanoparticles are both markedly enhanced when the macrophages are used. In addition, in vivo experiments involving both local and systemic administrations in breast tumor-bearing mice demonstrate that the proposed DDS can effectively target and kill the tumors, especially when the synergistic therapy is used. Consequently, this immune cell-based theranostic strategy may represent a potentially important advancement in the treatment of solid tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Delivery Systems/methods , Macrophages/immunology , Photochemotherapy , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/immunology , Cell Line, Tumor , Doxorubicin/chemistry , Drug Delivery Systems/instrumentation , Female , Gold/administration & dosage , Gold/chemistry , Humans , Infrared Rays , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Phagocytosis , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry
14.
Micromachines (Basel) ; 11(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963402

ABSTRACT

Capsule endoscopes (CEs) have emerged as an advanced diagnostic technology for gastrointestinal diseases in recent decades. However, with regard to robotic motions, they require active movability and multi-functionalities for extensive, untethered, and precise clinical utilization. Herein, we present a novel wireless biopsy CE employing active five degree-of-freedom locomotion and a biopsy needle punching mechanism for the histological analysis of the intestinal tract. A medical biopsy punch is attached to a screw mechanism, which can be magnetically actuated to extrude and retract the biopsy tool, for tissue extraction. The external magnetic field from an electromagnetic actuation (EMA) system is utilized to actuate the screw mechanism and harvest biopsy tissue; therefore, the proposed system consumes no onboard energy of the CE. This design enables observation of the biopsy process through the capsule's camera. A prototype with a diameter of 12 mm and length of 30 mm was fabricated with a medical biopsy punch having a diameter of 1.5 mm. Its performance was verified through numerical analysis, as well as in-vitro and ex-vivo experiments on porcine intestine. The CE could be moved to target lesions and obtain sufficient tissue samples for histological examination. The proposed biopsy CE mechanism utilizing punch biopsy and its wireless extraction-retraction technique can advance untethered intestinal endoscopic capsule technology at clinical sites.

15.
Colloids Surf B Biointerfaces ; 173: 539-548, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30343218

ABSTRACT

An effective nanoparticle-based drug delivery platform holds great promise for non-invasive cancer therapy. This study explores the breast tumor regression in vivo by synergistic photothermal-chemotherapy based on liposomal nanocomplex (folic acid-gold nanorods-anticancer drug-liposome). The proposed liposomal nanocomplex can enhance the tumor targeting by functionalizing folic acid (FA) molecules on the surface of liposome that encapsulates both gold nanorods (AuNRs) and the doxorubicin (DOX) to combine the photothermal therapy and the chemotherapy, respectively. Herein, 7-nm gold nanorods were fabricated and co-encapsulated with DOX into nanoliposomes functionalized with FA, with an average diameter of 154 nm, for active targeting to the cancer cells. The experimental results showed that the FA targeting liposomes had better cellular uptake than the non-targeting liposomes (AuNRs-DOX-LPs). Especially, upon 5 min exposure to near infrared (NIR) irradiation (808 nm) triggered DOX release could be achieved to 46.38% in 60 min at pH 5.5. In addition, in vitro cell proliferation assays indicated that, with synergistic photothermal-chemotherapy, the targeting liposomes could significantly enhance the toxicity towards the cancer cells with the IC50 value of 1.90 ± 0.12 µg mL-1. Furthermore, in vivo experiments on the breast tumor-bearing mice showed that the targeting liposomes could effectively inhibit the growth of the tumors using the combined strategy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/metabolism , Molecular Targeted Therapy/methods , Neoplasms/therapy , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Cell Line, Tumor , Combined Modality Therapy/methods , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Compounding/methods , Drug Liberation , Female , Folic Acid/chemistry , Gold/chemistry , Hydrogen-Ion Concentration , Infrared Rays , Injections, Subcutaneous , Liposomes/administration & dosage , Liposomes/chemistry , Low-Level Light Therapy/methods , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mice , Nanotubes/chemistry , Protein Binding
16.
Nanotechnology ; 28(42): 425101, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28944765

ABSTRACT

We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.


Subject(s)
Breast Neoplasms/therapy , Doxorubicin , Gold , Hyperthermia, Induced/methods , Indoles , Magnetite Nanoparticles , Phototherapy/methods , Polymers , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Female , Gold/chemistry , Gold/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Polymers/chemistry , Polymers/pharmacology
17.
Nanotechnology ; 28(43): 435102, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-28783035

ABSTRACT

In this study, a novel type of hyaluronic acid (HA)-decorated nanostructured lipid carrier (NLC) was prepared and investigated as a light-triggered drug release and combined photothermal-chemotherapy for cancer treatment. Polyhedral gold nanoparticles (Au NPs) with an average size of 10 nm were synthesized and co-encapsulated with doxorubicin (DOX) in the matrix of NLCs with a high drug loading efficiency (above 80%). HA decoration was achieved by the electrostatic interaction between HA and CTAB on the NLC surface. A remarkable temperature increase was observed by exposing the Au NP-loaded NLCs to an NIR laser, which heated the samples sufficiently (above 40 °C) to kill tumor cells. The entrapped DOX exhibited a sustained, stepwise NIR laser-triggered drug release pattern. The biocompatibility of the NLCs was investigated by MTT assay and the cell viability was maintained above 85%, even at high concentrations. The intracellular uptake of free DOX and entrapped DOX, observed by confocal microscopy, revealed two distinct uptake mechanisms, i.e. passive diffusion and endocytosis, respectively. In particular, internalization of the HA-Au-DOX-NLCs was more extensively enhanced than the Au-DOX-NLCs, which was attributed to HA-CD44 receptor-mediated endocytosis. Meanwhile, the internalized NLCs successfully escaped from the lysosomes, increasing the intracellular DOX. The HA-Au-DOX-NLCs IC50 value decreased from 2.3 to 0.6 µg ml-1 with NIR irradiation at 72 h, indicating the excellent synergistic antitumor effect of photothermal-chemotherapy. The photothermal ablation was further confirmed by a live/dead cell staining assay. Thus, a combined photothermal-chemotherapy approach has been proposed as a promising strategy for cancer treatment.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/therapy , Doxorubicin/pharmacology , Hyaluronic Acid/chemistry , Metal Nanoparticles/administration & dosage , Nanostructures/administration & dosage , Animals , Antibiotics, Antineoplastic/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cetrimonium , Cetrimonium Compounds/chemistry , Delayed-Action Preparations , Doxorubicin/chemistry , Drug Compounding/methods , Drug Liberation , Female , Gold/chemistry , Hot Temperature , Humans , Infrared Rays , Kinetics , Lipids/chemistry , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Nanostructures/chemistry , Nanostructures/ultrastructure , Xenograft Model Antitumor Assays
18.
Colloids Surf B Biointerfaces ; 154: 104-114, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28329728

ABSTRACT

The aim of this work is to prepare and evaluate a novel lipid-polymer hybrid liposomal nanoplatform (hyaluronic acid-magnetic nanoparticle-liposomes, HA-MNP-LPs) as a vehicle for targeted delivery and triggered release of an anticancer drug (docetaxel, DTX) in human breast cancer cells. We first synthesize an amphiphilic hyaluronic acid hexadecylamine polymer (HA-C16) to enhance the targeting ability of the hybrid liposome. Next, HA-MNP-LPs are constructed to achieve an average size of 189.93±2.74nm in diameter. In addition, citric acid-coated magnetic nanoparticles (MNPs) are prepared and embedded in the aqueous cores while DTX is encapsulated in the hydrophobic bilayers of the liposomes. Experiments with coumarin 6 loaded hybrid liposomes (C6/HA-MNP-LPs) show that the hybrid liposomes have superior cellular uptake in comparison with the conventional non-targeting liposomes (C6/MNP-LPs), and the result is further confirmed by Prussian blue staining. Under near-infrared laser irradiation (NIR, 808nm), the HA-MNP-LPs aqueous solution can reach 46.7°C in 10min, and the hybrid liposomes released over 20% more drug than the non-irradiated liposomes. Using a combination of photothermal irradiation and chemotherapy, the DTX-loaded hybrid liposomes (DTX/HA-MNP-LPs) significantly enhance therapeutic efficacy, with the IC50 value of 0.69±0.10µg/mL, which is much lower than the values for DTX monotherapy. Consequently, the prepared hybrid nanoplatform may offer a promising drug delivery vehicle with selective targeting and enhanced drug release in treating CD44-overexpressing cancers.


Subject(s)
Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Liposomes/chemistry , Magnetite Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects , Docetaxel , Drug Carriers/toxicity , Drug Delivery Systems , Drug Liberation/radiation effects , Humans , Infrared Rays , MCF-7 Cells , Magnetite Nanoparticles/toxicity , Magnetite Nanoparticles/ultrastructure , Mice , NIH 3T3 Cells , Particle Size , Taxoids/administration & dosage , Taxoids/pharmacokinetics
19.
Colloids Surf B Biointerfaces ; 143: 27-36, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-26998864

ABSTRACT

In this study, a novel type of high intensity focused ultrasound (HIFU)-triggered active tumor-targeting polymeric micelle was prepared and investigated for controlled drug release and enhanced cellular uptake. Amphiphilic hyaluronic acid (HA) conjugates were synthesized to form docetaxel loaded micelles in aqueous conditions with high encapsulation efficiencies of over 80%. The micelle sizes were limited to less than 150nm, and they varied slightly according to the encapsulated drug amount. Modifying the micellar surface modification with polyethylene glycol diamine successfully inhibited premature drug leakage at a certain level, and it can be expected to prolong the circulation time of the particles in blood. In addition, high-intensity focused ultrasound was introduced to control the release of docetaxel from micelles, to which the release behavior of a drug can be tuned. The in-vitro cell cytotoxicity of docetaxel-loaded micelles was verified against CT-26 and MDA-MB-231 cells. The IC50 values of drug-loaded micelles to CT-26 and MDA-MB-231 cells were 1230.2 and 870.9ng/mL, respectively. However, when exposed to HIFU, the values decreased significantly, to 181.9 and 114.3ng/mL, suggesting that HIFU can enhance cell cytotoxicity by triggering the release of a drug from the micelles. Furthermore, cellular uptake tests were conducted via the quantitative analysis of intracellular drug concentration within CT-26 (CD44 negative), MDA-MB-231 (CD44 positive), and MDA-MB-231 (CD44 blocked), and then imaged with coumarin-6 loaded micelles. The results verified that intracellular drug delivery can be enhanced efficiently via the CD44 receptor-mediated endocytosis of HA micelles. Moreover, HIFU enhanced the cellular uptake behavior by altering the permeability of the cell membrane. It was also able to aid with the extravasation of micelles into the interior of tumors, which will be explained in further research. Therefore, the present study demonstrates that the micelles prepared in this study can emerge as promising nanocarriers of chemotherapeutic agents for controlled drug release and tumor targeting in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Delayed-Action Preparations , Hyaluronic Acid/chemistry , Polyethylene Glycols/chemistry , Ultrasonic Waves , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Coumarins/metabolism , Docetaxel , Drug Compounding , Drug Delivery Systems , Drug Liberation/radiation effects , Endocytosis/radiation effects , Fluorescent Dyes/metabolism , Humans , Hyaluronan Receptors/metabolism , Kinetics , Micelles , Paclitaxel/metabolism , Paclitaxel/pharmacology , Taxoids/metabolism , Taxoids/pharmacology
20.
Adv Healthc Mater ; 5(2): 288-95, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26584018

ABSTRACT

In this study, a new type of targeted bacteriobots is prepared and investigated as a therapeutic strategy against solid tumors. Maleimide-functionalized hyaluronic acid (HA) polymer is synthesized and cross-linked with four-arm-thiolated polyethylene glycol (PEG-SH) to form HA microbeads with diameter of 8 µm through the Michael-type addition. Docetaxel (DTX)-loaded nanoparticles are encapsulated in HA-PEG microbeads and sustained in vitro drug-release pattern of the DTX from the HA-PEG microbeads is observed for up to 96 h. Dual-targeted bacteriobots are prepared using CD 44 receptor-targeted HA microbeads synthesized via microfluidics, followed by the attachment of the flagellar bacterium Salmonella typhimurium, which have been genetically engineered for tumor targeting, onto the surface of the HA microbeads by the specific interaction between streptavidin on the HA beads and biotin on the bacteria. After the attachment of bacteria, the bacteriobots show an average velocity of 0.72 µm s(-1) and high chemotactic migration velocity of 0.43 µm s(-1) towards 4T1 cells lysates. CD 44 receptor-specific cellular uptake is verified through flow cytometry analysis and confocal imaging, demonstrating enhanced intracellular uptake in CD 44 receptor positive tumor cells compared to normal cells. Therefore, the present study suggests that these bacteriobots have dual-tumor-targeting abilities displaying their potential for targeted anticancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Chemotaxis/drug effects , Genetic Engineering , Hyaluronic Acid/pharmacology , Microspheres , Salmonella typhimurium/metabolism , Animals , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Docetaxel , Drug Liberation , Endocytosis/drug effects , Female , Flow Cytometry , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/chemistry , Lactic Acid/chemistry , Maleimides/chemistry , Mice , Movement , NIH 3T3 Cells , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Proton Magnetic Resonance Spectroscopy , Taxoids/pharmacology , Taxoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...