Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(3): e14354, 2024.
Article in English | MEDLINE | ID: mdl-38769079

ABSTRACT

Female gametogenesis has been rarely studied due to gametophyte lethality and the unavailability of related genetic resources. In this study, we identified a rice ATP-binding cassette transporter, OsABCB24, whose null function displayed a significantly reduced seed setting rate by as much as 94%-100% compared with that of the wild type (WT). The reciprocal cross of WT and mutant plants demonstrated that the female reproductive organs in mutants were functionally impaired. Confocal microscopy observations revealed that, although megasporogenesis remained unaffected in CRISPR/Cas9 osabcb24 mutants, the formation of female gametophytes was interrupted. Additionally, the structure of the syncytial nucleus was impaired during the initial stages of endosperm formation. Histochemical analysis showed that OsABCB24 was preferentially expressed at the conjunction of receptacle and ovary, spanning from the functional megaspore stage to the two-nucleate embryo sac stage. Further, OsABCB24 was identified as an endoplasmic reticulum membrane-localized protein. Notably, the overexpression of OsABCB24 triggered a 1.5- to 2-fold increase in grain production compared to the WT. Our findings showed that OsABCB24 plays a key role in both female gametophyte development and the early development of seeds.


Subject(s)
ATP-Binding Cassette Transporters , Gene Expression Regulation, Plant , Oryza , Ovule , Plant Proteins , Seeds , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Ovule/growth & development , Ovule/genetics , Ovule/metabolism , Mutation/genetics , Plants, Genetically Modified
2.
Plant Mol Biol ; 92(1-2): 71-88, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27356912

ABSTRACT

Microspore production using endogenous developmental programs has not been well studied. The main limitation is the difficulty in identifying genes preferentially expressed in pollen grains at early stages. To overcome this limitation, we collected transcriptome data from anthers and microspore/pollen and performed meta-expression analysis. Subsequently, we identified 410 genes showing preferential expression patterns in early developing pollen samples of both japonica and indica cultivars. The expression patterns of these genes are distinguishable from genes showing pollen mother cell or tapetum-preferred expression patterns. Gene Ontology enrichment and MapMan analyses indicated that microspores in rice are closely linked with protein degradation, nucleotide metabolism, and DNA biosynthesis and regulation, while the pollen mother cell or tapetum are strongly associated with cell wall metabolism, lipid metabolism, secondary metabolism, and RNA biosynthesis and regulation. We also generated transgenic lines under the control of the promoters of eight microspore-preferred genes and confirmed the preferred expression patterns in plants using the GUS reporting system. Furthermore, cis-regulatory element analysis revealed that pollen specific elements such as POLLEN1LELAT52, and 5659BOXLELAT5659 were commonly identified in the promoter regions of eight rice genes with more frequency than estimation. Our study will provide new sights on early pollen development in rice, a model crop plant.


Subject(s)
Oryza/metabolism , Pollen/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Promoter Regions, Genetic/genetics
3.
J Plant Physiol ; 171(14): 1276-88, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25014263

ABSTRACT

Although the super family of ATP-binding cassette (ABC) proteins plays key roles in the physiology and development of plants, the functions of members of this interesting family mostly remain to be clarified, especially in crop plants. Thus, systematic analysis of this family in rice (Oryza sativa), a major model crop plant, will be helpful in the design of effective strategies for functional analysis. Phylogenomic analysis that integrates anatomy and stress meta-profiling data based on a large collection of rice Affymetrix array data into the phylogenic context provides useful clues into the functions for each of the ABC transporter family members in rice. Using anatomy data, we identified 17 root-preferred and 16-shoot preferred genes at the vegetative stage, and 3 pollen, 2 embryo, 2 ovary, 2 endosperm, and 1 anther-preferred gene at the reproductive stage. The stress data revealed significant up-regulation or down-regulation of 47 genes under heavy metal treatment, 16 genes under nutrient deficient conditions, and 51 genes under abiotic stress conditions. Of these, we confirmed the differential expression patterns of 14 genes in root samples exposed to drought stress using quantitative real-time PCR. Network analysis using RiceNet suggests a functional gene network involving nine rice ABC transporters that are differentially regulated by drought stress in root, further enhancing the prediction of biological function. Our analysis provides a molecular basis for the study of diverse biological phenomena mediated by the ABC family in rice and will contribute to the enhancement of crop yield and stress tolerance.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Stress, Physiological , ATP-Binding Cassette Transporters/metabolism , Gene Expression Regulation, Developmental , Genome-Wide Association Study , Molecular Sequence Data , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...