Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Biomed Pharmacother ; 177: 117032, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941894

ABSTRACT

In cell-based bone augmentation, transplanted cell dysfunction and apoptosis can occur due to oxidative stress caused by the overproduction of reactive oxygen species (ROS). Edaravone (EDA) is a potent free radical scavenger with potential medical applications. This study aimed to investigate the effect of controlling oxidative stress on bone regeneration using EDA. Bone marrow-derived cells were collected from 4-week-old rats, and EDA effects on cell viability and osteogenic differentiation were evaluated. Collagen gels containing PKH26-prelabeled cells were implanted into the calvarial defects of 12-week-old rats, followed by daily subcutaneous injections of normal saline or 500 µM EDA for 4 d. Bone formation was examined using micro-computed tomography and histological staining. Immunofluorescence staining was performed for markers of oxidative stress, macrophages, osteogenesis, and angiogenesis. EDA suppressed ROS production and hydrogen peroxide-induced apoptosis, recovering cell viability and osteoblast differentiation. EDA treatment in vivo increased new bone formation. EDA induced the transition of the macrophage population toward the M2 phenotype. The EDA group also exhibited stronger immunofluorescence for vascular endothelial growth factor and CD31. In addition, more PKH26-positive and PKH26-osteocalcin-double-positive cells were observed in the EDA group, indicating that transplanted cell survival was prolonged, and they differentiated into bone-forming cells. This could be attributed to oxidative stress suppression at the transplantation site by EDA. Collectively, local administration using EDA facilitates bone regeneration by improving the local environment and angiogenesis, prolonging survival, and enhancing the osteogenic capabilities of transplanted cells.

2.
Front Med (Lausanne) ; 11: 1345698, 2024.
Article in English | MEDLINE | ID: mdl-38695034

ABSTRACT

Background: Antimicrobial Stewardship Programs (ASP) have been applied widely in high-resource countries to prevent surgical site infections (SSI). Evidence favoring ASP interventions (ASPi) in gastrointestinal surgeries from low and middle-income countries has been limited, especially in antimicrobial prophylaxis. We aimed to investigate this gap at a Vietnamese tertiary hospital. Methods: We conducted a retrospective cohort study on patients undergoing clean-contaminated surgeries in 2015 who received standard of care (SoC) or SoC + ASPi. Primary outcome was 30-day SSI incidence. Secondary outcomes included length of stay (LoS) after surgery (days), cost of antibiotics, and cost of treatment (USD). Results were controlled for multiplicity and reported with treatment effect and 95% confidence interval (95%CI). A predictive model was built and cross-validated to detect patients at high risk of SSI. Results: We included 395 patients for analysis (48.1% being female, mean age 49.4 years). Compared to patients receiving SoC, those with SoC + ASPi had a lower incidence of 30-day SSI (-8.8, 95%CI: -16.0 to -1.6, p = 0.042), shorter LoS after surgery (-1.1 days, 95%CI: -1.8 to -0.4, p = 0.004), and lower cost of antibiotics (-37.3 USD, 95%CI: -59.8 to -14.8, p = 0.012) and treatment (-191.1 USD, 95%CI: -348.4 to -33.8, p = 0.042). We estimated that by detecting patients at high risk of SSI with the predictive model and providing prophylactic measures, we could save 398120.7 USD per 1,000 cases of SSI. Conclusion: We found that ASPi were associated with a reduction in risks of SSI, hospital stays, and cost of antibiotics/treatment in a Vietnamese tertiary hospital.

3.
Nanomaterials (Basel) ; 14(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786795

ABSTRACT

We report the temperature dependences of the dielectric function ε = ε1 + iε2 and critical point (CP) energies of the uniaxial crystal GaSe in the spectral energy region from 0.74 to 6.42 eV and at temperatures from 27 to 300 K using spectroscopic ellipsometry. The fundamental bandgap and strong exciton effect near 2.1 eV are detected only in the c-direction, which is perpendicular to the cleavage plane of the crystal. The temperature dependences of the CP energies were determined by fitting the data to the phenomenological expression that incorporates the Bose-Einstein statistical factor and the temperature coefficient to describe the electron-phonon interaction. To determine the origin of this anisotropy, we perform first-principles calculations using the mBJ method for bandgap correction. The results clearly demonstrate that the anisotropic dielectric characteristics can be directly attributed to the inherent anisotropy of p orbitals. More specifically, this prominent excitonic feature and fundamental bandgap are derived from the band-to-band transition between s and pz orbitals at the Γ-point.

4.
Nano Converg ; 10(1): 32, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418068

ABSTRACT

The thermoelectric performance of SnSe strongly depends on its low-energy electron band structure that provides high density of states in a narrow energy window due to the multi-valley valence band maximum (VBM). Angle-resolved photoemission spectroscopy measurements, in conjunction with first-principles calculations, reveal that the binding energy of the VBM of SnSe is tuned by the population of Sn vacancy, which is determined by the cooling rate during the sample growth. The VBM shift follows precisely the behavior of the thermoelectric power factor, while the effective mass is barely modified upon changing the population of Sn vacancies. These findings indicate that the low-energy electron band structure is closely correlated with the high thermoelectric performance of hole-doped SnSe, providing a viable route toward engineering the intrinsic defect-induced thermoelectric performance via the sample growth condition without an additional ex-situ process.

5.
Heliyon ; 9(6): e17418, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37366521

ABSTRACT

It is essential to achieve herd immunity in order to control the COVID-19 pandemic, and this requires a high level of vaccination rate. Despite the importance of vaccination, hesitancy and unwillingness in receiving the COVID-19 vaccine still exists. It is therefore crucial to comprehend the intentions of adults regarding COVID-19 vaccination, which is beneficial for establishing community immunity and an efficient future pandemic response. An online survey was administered to 2722 adults in Vietnam. Cronbach's alpha, exploratory factor analysis (EFA), and confirmatory factor analysis (CFA) were used to test the reliability and validity of the developed scales. Then, structural equational modeling (SEM) was employed to test correlations. This study found that favorable attitudes toward COVID-19 vaccines played the most important role in shaping adults' intention to receive these vaccines, followed by perceived behavioral control, perceived benefits of COVID-19 vaccines, and subjective norms. Concurrently, all three core dimensions of the theory of planned behavior mediated the link between the perceived benefits of COVID-19 vaccines and the intention to receive them. Also, there were significant differences between males and females in the way they formed this intention. The findings of this study offer valuable guidance for practitioners on how to encourage adults to receive COVID-19 vaccinations, as well as how to limit the transmission of the COVID-19 virus.

6.
J Colloid Interface Sci ; 606(Pt 1): 337-352, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34392030

ABSTRACT

The construction of a Z-scheme photocatalyst by coupling semiconductors with conductors is an efficient way to achieve high pollutant degradation efficiency. In this study, a hydrothermal approach was used to fabricate a Z-scheme photocatalyst consisting of C-MoS2 sheets wrapped around octahedral anatase TiO2 nanocrystals. The catalyst showed excellent photocatalytic efficiency (99%) for methylene blue degradation with low catalyst loading (0.2 g L-1) under the simulated solar light within 60 min. High photocatalytic degradation efficiencies were also observed for Rhodamine B, methyl orange, and tetracycline under solar irradiation. The C-MoS2 acts as an electron mediator and serves as a carrier transmission bridge for the efficient electron-hole separation. The electron-rich (101)-faceted TiO2 benefits the Z-scheme recombination of electrons from the conduction band of TiO2 and holes at the valence band of MoS2. The semiconductor coupling of (101)-exposed octahedral TiO2 and 2H-MoS2 as well as the introduction of solid-state electron mediators, 1T-MoS2 and carbon, resulted in increased light absorption and accelerated charge transfer at the contact interface, which enhanced the photocatalytic activity of the photocatalyst significantly compared to those of P25, MoS2/TiO2, and C-MoS2. The efficient separation of electron-hole pairs prolongs their lifetime for oxidation and reduction reactions in the degradation process.


Subject(s)
Environmental Pollutants , Molybdenum , Catalysis , Titanium
7.
Diabetes Metab Syndr ; 15(6): 102293, 2021.
Article in English | MEDLINE | ID: mdl-34598010

ABSTRACT

BACKGROUND AND AIMS: Herein, we aim to examine the prevalence of depression in type 2 diabetic patients at a provincial general hospital located in the Northeast region of Vietnam and to explore its relationship with some sociodemographic, lifestyle and medical history characteristics. MATERIALS AND METHODS: This was a single-centre cross-sectional descriptive study. The patients of both sexes who were at the age of 18 years or above, were treated at our institution and were diagnosed with type 2 diabetes mellitus, previously or during the study period. A total of 220 patients were included in the study. RESULTS: Depression prevalence was 32.27% according to ICD-10. The severity of depression was categorized as mild in 77.46% patients, moderate in 19.72% patients and severe in 2.82% patients. The odds of depression was 0.18 (95%CI 0.05-0.69, p = 0.012) less for those known as the upper social class compared with those in lower social class. Those who were not on insulin treatment had significantly higher odds of depression than those on treatment with insulin (OR 2.06, 95%CI: 1.01-4.21). Individuals on treatment without oral diabetes drugs had higher odd of depression compared to those being treated with oral diabetes drugs (OR 2.77, 95%CI: 1.14-6.73). Also, hypertension was an increasing contributor to the depression prevalence (OR 2.32, 95%CI: 1.10-4.90). CONCLUSIONS: A high prevalence of depression among type 2 diabetic patients was documented. Only significant factors for depression were lower social class, co-morbid hypertension and none of the insulin treatment or oral diabetes drugs.


Subject(s)
Biomarkers/blood , Blood Glucose/analysis , Depression/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cross-Sectional Studies , Depression/blood , Depression/diagnosis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Vietnam/epidemiology
8.
J Colloid Interface Sci ; 600: 729-739, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34051462

ABSTRACT

The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of non-stoichiometric cubic perovskite fluorides, KNi1-xCoxF3-δ (x = 0.2; δ = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98% for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors.

9.
RSC Adv ; 11(31): 18881-18897, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478660

ABSTRACT

This study presents the modification of cassava root husk-derived biochar (CRHB) with ZnO nanoparticles (ZnO-NPs) for the simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi). By conducting batch-mode experiments, it was concluded that 3% w/w was the best impregnation ratio for the modification of CRHB using ZnO-NPs, and was denoted as CRHB-ZnO3 in this study. The optimal conditions for heavy metal adsorption were obtained at a pH of 6-7, contact time of 60 min, and initial metal concentration of 80 mg L-1. The heavy metal adsorption capacities onto CRHB-ZnO3 showed the following tendency: Pb(ii) > Cd(ii) > As(iii) > Cr(vi). The total optimal adsorption capacity achieved in the adsorption of the 4 abovementioned metals reached 115.11 and 154.21 mg g-1 for CRHB and CRHB-ZnO3, respectively. For each Pb(ii), Cd(ii), As(iii), and Cr(vi) metal, the maximum adsorption capacities of CRHB-ZnO3 were 44.27, 42.05, 39.52, and 28.37 mg g-1, respectively, and those of CRHB were 34.47, 32.33, 26.42 and 21.89 mg g-1, respectively. In terms of kinetics, both the pseudo-first-order and the pseudo-second-order fit well with metal adsorption onto biochars with a high correlation coefficient of R 2, while the best isothermal description followed the Langmuir model. As a result, the adsorption process of heavy metals onto biochars was chemisorption on homogeneous monolayers, which was mainly controlled by cation exchange and surface precipitation mechanisms due to enriched oxygen-containing surface groups with ZnO-NP modification of biochar. The FTIR and EDS analysis data confirmed the important role of oxygen-containing surface groups, which significantly contributed to removal of heavy metals with extremely high adsorption capacities, comparable with other studies. In conclusion, due to very high adsorption capacities for metal cations, the cassava root husk-derived biochar modified with ZnO-NPs can be applied as the alternative, inexpensive, non-toxic and highly effective adsorbent in the removal of various toxic cations.

10.
Anal Chim Acta ; 1141: 71-82, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33248664

ABSTRACT

Robust, highly selective, and sensitive sensor devices are in high demand for the detection of bioactive molecules. Bioactive molecules are quantified by the electrochemical approach in the presence of other interference species, presenting a significant challenge to researchers. In this study, molecularly imprinted polymer (MIP) was prepared using the electrochemical method in a methanol/water solution mixture. The MIP on the electrochemically reduced graphene oxide (ERGO) surface exhibited hornlike morphology in contrast to the bare GC obtained, forming irregular bulky structures with a size range of 0.8-2.1 µm. The domperidone (DP) binding/extraction from MIP@ERGO was studied using ex situ Fourier transform infrared and X-ray photoelectron spectroscopy. The hornlike MIP@ERGO/GC revealed a higher heterogeneous electron transfer rate constant and DP antiemetic drug oxidation current response compared with the MIP/GC and non-imprinted polymer (NIP/GC) electrodes. The hornlike MIP@ERGO/GC electrode fabrication was optimized in terms of the pyrrole polymerization cyclic voltammetry cycle number, monomer/template concentration, and incubation times. The fabricated MIP@ERGO/GC electrode demonstrated a wide concentration range of DP detection (from 0.5 to 17.2 µM), and the limit of detection was found to be 3.8 nM, with a signal-to-noise ratio of 3. Moreover, the MIP@ERGO/GC electrode had excellent DP selectivity (with an imprinting factor of 4.20), even in the presence of ascorbic acid, uric acid, dopamine, xanthine, gelatin, glucose, sucrose, l-cysteine, folic acid, K+, Na+, Ca2+, CO32-, SO42-, and NO3- interferences. The MIP@ERGO/GC electrode was tested on a human urine sample, and DP recovery ranges between 98.4% and 100.87% were obtained.


Subject(s)
Antiemetics , Molecular Imprinting , Pharmaceutical Preparations , Electrochemical Techniques , Electrodes , Graphite , Humans , Polymers
11.
Sci Rep ; 10(1): 11761, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678218

ABSTRACT

The evolution of the optical phonons in layered semiconductor alloys SnSe(1-x)Sx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm). The polarization dependences of the phonon modes are compared with transmission electron diffraction measurements to determine the crystallographic orientation of the samples. Some of the Raman modes show significant variation in their polarization behavior depending on the excitation wavelengths. It is established that the maximum intensity direction of the Ag2 mode of SnSe(1-x)Sx (0 ≤ x ≤ 1) does not depend on the excitation wavelength and corresponds to the armchair direction. It is additionally found that the lower-frequency Raman modes of Ag1, Ag2 and B3g1 in the alloys show the typical one-mode behavior of optical phonons, whereas the higher-frequency modes of B3g2, Ag3 and Ag4 show two-mode behavior.

12.
J Colloid Interface Sci ; 561: 459-469, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31753506

ABSTRACT

Zinc ferrite and graphene composites have attracted considerable attention in wastewater treatment. In this work, a magnetically separable mesoporous composite of ZnFe2O4 nanoparticles (NPs) and reduced graphene oxide (rGO) was prepared through a simple and eco-friendly method with pure water as solvent and without the need for subsequent thermal treatment. Uniformly dispersed ZnFe2O4 NPs on the surface of rGO sheets exhibited good crystallinity and a large BET specific surface area. These factors contributed to good photocatalytic performance of the composite for the degradation of methylene blue (MB) under simulated solar-light radiation, increased adsorptivity, increased separation efficiency of the photo-excited charges on the surface of the catalyst, and broadened light-absorption range of the composite. Efficient interfacial interaction between the ZnFe2O4 NPs and rGO sheets resulted in synergistic effects. The magnetically separable ZnFe2O4@rGO nanocomposite proved an efficient and stable catalyst in three consecutive photodegradation cycles for MB dye in aqueous solution under solar radiation. In addition, the synthesis method proposed in this study could be scaled-up easily due to the simplicity of the process, the lack of a toxic reagent, and the use of low temperatures.

13.
Sci Rep ; 8(1): 13907, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30224773

ABSTRACT

Non-magnetic (NM) metals with strong spin-orbit coupling have been recently explored as a probe of interface magnetism on ferromagnetic insulators (FMI) by means of the spin Hall magnetoresistance (SMR) effect. In NM/FMI heterostructures, increasing the spin mixing conductance (SMC) at the interface comes as an important step towards devices with maximized SMR. Here we report on the study of SMR in Pt/Fe3O4 bilayers at cryogenic temperature, and identify a strong dependence of the determined real part of the complex SMC on the interface roughness. We tune the roughness of the Pt/Fe3O4 interface by controlling the growth conditions of the Fe3O4 films, namely by varying the thickness, growth technique, and post-annealing processes. Field-dependent and angular-dependent magnetoresistance measurements sustain the clear observation of SMR. The determined real part of the complex SMC of the Pt/Fe3O4 bilayers ranges from 4.96 × 1014 Ω-1 m-2 to 7.16 × 1014 Ω-1 m-2 and increases with the roughness of the Fe3O4 underlayer. We demonstrate experimentally that the interface morphology, acting as an effective interlayer potential, leads to an enhancement of the spin mixing conductance.

14.
J Colloid Interface Sci ; 530: 361-371, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29982029

ABSTRACT

This paper reports a facile solvothermal method for the synthesis of Bi2S3 flower-like nanostructures grown in situ on a nitrogen-doped reduced graphene oxide (Bi2S3@N-G) surface. Thiourea was used as the nitrogen source and reducing agent for graphene oxide. The surface morphology of the as-prepared Bi2S3@N-G composites was analyzed by field emission scanning electron microscopy and transmission electron microscopy. The crystalline structure and surface chemical states were examined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The as-prepared Bi2S3@N-G composite was deposited on a glassy carbon (GC) electrode, and the modified electrode was employed for the electrocatalytic detection of H2O2. The calculated diffusion coefficient and catalytic rate constant of the Bi2S3@N-G modified electrode were 4.9 × 10-6 cm2 s-1 and 5671 M-1 s-1, respectively. The Bi2S3@N-G/GC electrode demonstrated a wide concentration range for H2O2, from 10 to 42,960 µM, with a sensitivity of 0.1535 µA µM-1 and an obtained limit of detection of 1.9 µM.

15.
Nanoscale Res Lett ; 13(1): 200, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980879

ABSTRACT

ᅟ: We report on the successful preparation of Bi-doped n-type polycrystalline SnSe by hot-press method. We observed anisotropic transport properties due to the (h00) preferred orientation of grains along the pressing direction. The electrical conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 12.85 and 6.46 S cm-1 at 773 K for SnSe:Bi 8% sample, respectively, while thermal conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 0.81 and 0.60 W m-1 K-1 at 773 K for SnSe:Bi 8% sample, respectively. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition, whose transition temperature increases with Bi concentration. Our work addressed a possibility to dope polycrystalline SnSe by a hot-pressing process, which may be applied to module applications. HIGHLIGHTS: 1. We have successfully achieved Bi-doped n-type polycrystalline SnSe by the hot-press method. 2. We observed anisotropic transport properties due to the [h00] preferred orientation of grains along pressing direction. 3. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition.

16.
Nat Commun ; 7: 13713, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941762

ABSTRACT

Recently SnSe, a layered chalcogenide material, has attracted a great deal of attention for its excellent p-type thermoelectric property showing a remarkable ZT value of 2.6 at 923 K. For thermoelectric device applications, it is necessary to have n-type materials with comparable ZT value. Here, we report that n-type SnSe single crystals were successfully synthesized by substituting Bi at Sn sites. In addition, it was found that the carrier concentration increases with Bi content, which has a great influence on the thermoelectric properties of n-type SnSe single crystals. Indeed, we achieved the maximum ZT value of 2.2 along b axis at 733 K in the most highly doped n-type SnSe with a carrier density of -2.1 × 1019 cm-3 at 773 K.

17.
Article in English | MEDLINE | ID: mdl-26577194

ABSTRACT

In Vietnam, highly pathogenic avian influenza (HPAI), such as that caused by H5N1 viruses, is the most highly contagious infectious disease that has been affecting domestic poultry in recent years. Vietnam might be an evolutionary hotspot and a potential source of globally pandemic strains. However, few studies have reported viruses circulating in the south-central region of Vietnam. In the present study, 47 H5N1-positive samples were collected from both vaccinated and unvaccinated poultry farms in the South Central Coast region of Vietnam during 2013-2014, and their genetic diversity was analyzed. A common sequence motif for HPAI virus was identified at HA-cleavage sites in all samples: either RERRRKR/G (clades 2.3.2.1c and 2.3.2.1a) or REGRRKKR/G (clade 1.1.2). Phylogenetic analysis of HA genes identified three clades of HPAI H5N1: 1.1.2 (n=1), 2.3.2.1a (n=1), and 2.3.2.1c (n=45). The phylogenetic analysis indicated that these Vietnamese clades may have evolved from Chinese and Cambodian virus clades isolated in 2012-2013 but are less closely related to the clades detected from the Tyva Republic, Bulgaria, Mongolia, Japan, and Korea in 2009-2011. Detection of the coexistence of virus clades 2.3.2.1 and the very virulent 1.1.2 in the south-central regions suggests their local importance and highlights concerns regarding their spread, both northwards and southwards, as well as the potential for reassortment. The obtained data highlight the importance of regular identification of viral evolution and the development and use of region-specific vaccines.


Subject(s)
Evolution, Molecular , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Influenza, Human/virology , Animals , Cambodia , China , Genetic Variation , Humans , Influenza A Virus, H5N1 Subtype/classification , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Phylogeny , Poultry/virology , Vietnam/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...