Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(21): 33914-33922, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859160

ABSTRACT

Raman spectroscopy is one of the most efficient and non-destructive techniques for characterizing materials. However, it is challenging to analyze thin films using Raman spectroscopy since the substrates beneath the thin film often obscure its optical response. Here, we evaluate the suitability of fourteen commonly employed single-crystal substrates for Raman spectroscopy of thin films using 633 nm and 785 nm laser excitation systems. We determine the optimal wavenumber ranges for thin-film characterization by identifying the most prominent Raman peaks and their relative intensities for each substrate and across substrates. In addition, we compare the intensity of background signals across substrates, which is essential for establishing their applicability for Raman detection in thin films. The substrates LaAlO3 and Al2O3 have the largest free spectral range for both laser systems, while Al2O3 has the lowest background levels, according to our findings. In contrast, the substrates SrTiO3 and Nb:SrTiO3 have the narrowest free spectral range, while GdScO3, NGO and MgO have the highest background levels, making them unsuitable for optical investigations.

2.
Nat Commun ; 14(1): 1047, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828818

ABSTRACT

Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.


Subject(s)
Inorganic Chemicals , Phonons , Calcium Compounds , Oxides
3.
Nat Nanotechnol ; 16(1): 63-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33199882

ABSTRACT

Conical intersections (CoIns) of multidimensional potential energy surfaces are ubiquitous in nature and control pathways and yields of many photo-initiated intramolecular processes. Such topologies can be potentially involved in the energy transport in aggregated molecules or polymers but are yet to be uncovered. Here, using ultrafast two-dimensional electronic spectroscopy (2DES), we reveal the existence of intermolecular CoIns in molecular aggregates relevant for photovoltaics. Ultrafast, sub-10-fs 2DES tracks the coherent motion of a vibrational wave packet on an optically bright state and its abrupt transition into a dark state via a CoIn after only 40 fs. Non-adiabatic dynamics simulations identify an intermolecular CoIn as the source of these unusual dynamics. Our results indicate that intermolecular CoIns may effectively steer energy pathways in functional nanostructures for optoelectronics.

4.
J Phys Chem Lett ; 10(18): 5414-5421, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31449755

ABSTRACT

Halide perovskites are promising optoelectronic materials. Despite impressive device performance, especially in photovoltaics, the femtosecond dynamics of elementary optical excitations and their interactions are still debated. Here we combine ultrafast two-dimensional electronic spectroscopy (2DES) and semiconductor Bloch equations (SBEs) to probe the room-temperature dynamics of nonequilibrium excitations in CsPbBr3 crystals. Experimentally, we distinguish between excitonic and free-carrier transitions, extracting a ∼30 meV exciton binding energy, in agreement with our SBE calculations and with recent experimental studies. The 2DES dynamics indicate remarkably short, <30 fs carrier relaxation at a ∼3 meV/fs rate, much faster than previously anticipated for this material, but similar to that in direct band gap semiconductors such as GaAs. Dynamic screening of excitons by free carriers also develops on a similarly fast <30 fs time scale, emphasizing the role of carrier-carrier interactions for this material's optical properties. Our results suggest that strong electron-phonon couplings lead to ultrafast relaxation of charge carriers, which, in turn may limit halide perovskites' carrier mobilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...