Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(95): eadi4191, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728412

ABSTRACT

Conventional dendritic cells (DCs) are essential mediators of antitumor immunity. As a result, cancers have developed poorly understood mechanisms to render DCs dysfunctional within the tumor microenvironment (TME). After identification of CD63 as a specific surface marker, we demonstrate that mature regulatory DCs (mregDCs) migrate to tumor-draining lymph node tissues and suppress DC antigen cross-presentation in trans while promoting T helper 2 and regulatory T cell differentiation. Transcriptional and metabolic studies showed that mregDC functionality is dependent on the mevalonate biosynthetic pathway and its master transcription factor, SREBP2. We found that melanoma-derived lactate activates SREBP2 in tumor DCs and drives conventional DC transformation into mregDCs via homeostatic or tolerogenic maturation. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promoted antitumor CD8+ T cell activation and suppressed melanoma progression. CD63+ mregDCs were found to reside within the lymph nodes of several preclinical tumor models and in the sentinel lymph nodes of patients with melanoma. Collectively, this work suggests that a tumor lactate-stimulated SREBP2-dependent program promotes CD63+ mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME.


Subject(s)
Dendritic Cells , Lactic Acid , Mice, Inbred C57BL , Signal Transduction , Sterol Regulatory Element Binding Protein 2 , Dendritic Cells/immunology , Animals , Mice , Humans , Sterol Regulatory Element Binding Protein 2/immunology , Lactic Acid/metabolism , Signal Transduction/immunology , Melanoma/immunology , Melanoma/pathology , Disease Progression , Immune Tolerance/immunology , Female , Cell Line, Tumor , Tumor Microenvironment/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology
2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617347

ABSTRACT

Therapeutic resistance to immune checkpoint blockade has been commonly linked to the process of mesenchymal transformation (MT) and remains a prevalent obstacle across many cancer types. An improved mechanistic understanding for MT-mediated immune evasion promises to lead to more effective combination therapeutic regimens. Herein, we identify the Hedgehog transcription factor, Gli2, as a key node of tumor-mediated immune evasion and immunotherapy resistance during MT. Mechanistic studies reveal that Gli2 generates an immunotolerant tumor microenvironment through the upregulation of Wnt ligand production and increased prostaglandin synthesis. This pathway drives the recruitment, viability, and function of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) while also impairing type I conventional dendritic cell, CD8 + T cell, and NK cell functionality. Pharmacologic EP2/EP4 prostaglandin receptor inhibition and Wnt ligand inhibition each reverses a subset of these effects, while preventing primary and adaptive resistance to anti-PD-1 immunotherapy, respectively. A transcriptional Gli2 signature correlates with resistance to anti-PD-1 immunotherapy in stage IV melanoma patients, providing a translational roadmap to direct combination immunotherapeutics in the clinic. SIGNIFICANCE: Gli2-induced EMT promotes immune evasion and immunotherapeutic resistance via coordinated prostaglandin and Wnt signaling.

3.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162965

ABSTRACT

Dendritic cells (cDCs) are essential mediators of anti-tumor immunity. Cancers have developed mechanisms to render DCs dysfunctional within the tumor microenvironment. Utilizing CD63 as a unique surface marker, we demonstrate that mature regulatory DCs (mregDCs) suppress DC antigen cross-presentation while driving T H 2 and regulatory T cell differentiation within tumor-draining lymph node tissues. Transcriptional and metabolic studies show that mregDC functionality is dependent upon the mevalonate biosynthetic pathway and the master transcription factor, SREBP2. Melanoma-derived lactate activates DC SREBP2 in the tumor microenvironment (TME) and drives mregDC development from conventional DCs. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promotes anti-tumor CD8 + T cell activation and suppresses melanoma progression. CD63 + mregDCs reside within the sentinel lymph nodes of melanoma patients. Collectively, this work describes a tumor-driven SREBP2-dependent program that promotes CD63 + mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME. One Sentence Summary: The metabolic transcription factor, SREBF2, regulates the development and tolerogenic function of the mregDC population within the tumor microenvironment.

4.
Sci Transl Med ; 14(672): eabq7019, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36417489

ABSTRACT

The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.


Subject(s)
Melanoma , Toll-Like Receptor 4 , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , HSP70 Heat-Shock Proteins/metabolism , Immunotherapy , Melanoma/pathology , Disease Progression , Tumor Microenvironment
5.
J Thromb Haemost ; 20(12): 2873-2886, 2022 12.
Article in English | MEDLINE | ID: mdl-36111375

ABSTRACT

BACKGROUND: Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM ß2 . OBJECTIVES: An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS: Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM ß2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS: Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM ß2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.


Subject(s)
Afibrinogenemia , Diabetes Mellitus, Type 2 , Hemostatics , Non-alcoholic Fatty Liver Disease , Mice , Animals , Fibrin/metabolism , Polymers , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Fibrinogen/genetics , Fibrinogen/metabolism , Factor XIII/metabolism , Obesity , Diet
SELECTION OF CITATIONS
SEARCH DETAIL
...