Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026723

ABSTRACT

F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.

2.
Adv Mater ; 34(41): e2204957, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35945159

ABSTRACT

NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.


Subject(s)
Metal Nanoparticles , Silver , DNA/chemistry , Metal Nanoparticles/chemistry , Nucleotides , Silver/chemistry , Spectrometry, Fluorescence
3.
Food Microbiol ; 70: 262-268, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29173635

ABSTRACT

Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L-1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L-1 or 200 g L-1. These findings offer insight to the importance of VA to cell growth in high sugar media.


Subject(s)
Saccharomyces cerevisiae/metabolism , Sugars/metabolism , Vacuoles/chemistry , Acids/metabolism , Fermentation , Homeostasis , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Vacuoles/metabolism , Vitis/metabolism , Vitis/microbiology
4.
J Am Chem Soc ; 139(29): 10126-10132, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28658952

ABSTRACT

This paper describes the role of tetraalkylammonium counterions [NR4+, R = -CH3, -CH2CH3, -(CH2)2CH3, or -(CH2)3CH3] in gating the electrostatic potential at the interface between the 6-mercaptohexanoate (MHA) ligand shell of a PbS quantum dot (QD) and water. The permeability of this ligand shell to a negatively charged anthraquinone derivative (AQ), measured from the yield of electron transfer (eT) from the QD core to AQ, increases as the steric bulk of NR4+ increases (for a given concentration of NR4+). This result indicates that bulkier counterions screen repulsive interactions at the ligand/solvent interface more effectively than smaller counterions. Free energy scaling analysis and molecular dynamics simulations suggest that ion pairing between the ligand shell of the QD and NR4+ results from a combination of electrostatic and van der Waals components, and that the van der Waals interaction promotes ion pairing with longer-chain counterions and more effective screening. This work provides molecular-level details that dictate a nanoparticle's electrostatic potential and demonstrates the sensitivity of the yield of photoinduced charge transfer between a QD and a molecular probe to even low-affinity binding events at the QD/solvent interface.

5.
BMC Genomics ; 15: 552, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24993029

ABSTRACT

BACKGROUND: Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast's adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L-1 total sugar. RESULTS: Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole's role in ion homeostasis and pH regulation, through vacuole acidification. CONCLUSION: We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, 'stuck' fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the 'Fermentome'. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast's response and adaptation to stresses imposed during high-sugar fermentations.


Subject(s)
Fermentation/genetics , Saccharomyces cerevisiae/genetics , Transcriptome , Gene Deletion , Genes, Fungal , Genetic Engineering , Hydrogen-Ion Concentration , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Wine/microbiology
6.
Pancreatology ; 13(5): 508-16, 2013.
Article in English | MEDLINE | ID: mdl-24075516

ABSTRACT

INTRODUCTION: More effective therapies are required to improve survival of pancreatic cancer. Possible immunologic targets include tumour associated macrophages (TAMs), generally consisting of M1- and M2-macrophages. We have analysed the impact of TAMS on pancreatic cancer in a syngeneic orthotopic murine model. METHODS: 6606PDA murine pancreatic cancer cells were orthotopically injected into C57BL6 mice. Tumour growth was monitored using MRI. Macrophages were depleted by clodronate liposomes. Tumours including microvessel density were evaluated using immunohistochemistry, immunofluorescence and/or cytometric beads assays. Naïve macrophages were generated employing peritoneal macrophages. In vitro experiments included culturing of macrophages in tumour supernatants as well as tumour cells cultured in macrophage supernatants using arginase as well as Griess assays. RESULTS: Clodronate treatment depleted macrophages by 80% in livers (p = 0.0051) and by 60% in pancreatic tumours (p = 0.0169). MRI revealed tumour growth inhibition from 221.8 mm(3) to 92.3 mm(3) (p = 0.0216). Micro vessel densities were decreased by 44% (p = 0.0315). Yet, MCP-1-, IL-4- and IL-10-levels within pancreatic tumours were unchanged. 6606PDA culture supernatants led to a shift from naïve macrophages towards an M2-phenotype after a 36 h treatment (p < 0.0001), reducing M1-macrophages at the same time (p < 0.037). In vivo, M2-macrophages represented 85% of all TAMs (p < 0.0001). Finally, culture supernatants of M2-macrophages induced tumour growth in vitro by 63.2% (p = 0.0034). CONCLUSIONS: This quid pro quo of tumour cells and M2-macrophages could serve as a new target for future immunotherapies that interrupt tumour promoting activities of TAMs and change the iNOS-arginase balance towards their tumoricidal capacities.


Subject(s)
Macrophages/immunology , Pancreatic Neoplasms/immunology , Animals , Cell Differentiation , Cell Line, Tumor , Clodronic Acid/administration & dosage , Culture Media/pharmacology , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Pancreatic Neoplasms/pathology
7.
Org Lett ; 13(6): 1370-3, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21348505

ABSTRACT

Probing the nucleophilic ring-opening of various bicyclic [2.2.1] hetaryne-furan Diels-Alder adducts revealed that efficient reactivity could be observed with heteroatom nucleophiles by using a cationic Rh(I) complex in combination with a chiral Josiphos-type phosphine ligand. Remarkably, this catalyst system was not impeded by the incorporation of a heteroatom into the substrate. Racemic materials afforded separable mixtures of enantioenriched regioisomers, indicating that strong reagent control is operative.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Rhodium/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Catalysis , Combinatorial Chemistry Techniques , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...