Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 22(13): 2646-52, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11545387

ABSTRACT

A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Endopeptidases/analysis , Gelatin , Protease Inhibitors/analysis , Acrylic Resins , Animals , Bromelains/analysis , Cattle
2.
J Exp Bot ; 52(358): 881-9, 2001 May.
Article in English | MEDLINE | ID: mdl-11432905

ABSTRACT

Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.


Subject(s)
Glucosyltransferases/metabolism , Glycoside Hydrolases/metabolism , Solanum lycopersicum/metabolism , Sucrose/metabolism , Cytosol/metabolism , Fruit/enzymology , Fruit/metabolism , Solanum lycopersicum/enzymology , Vacuoles/metabolism , beta-Fructofuranosidase
3.
Plant Cell ; 11(12): 2407-18, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10590167

ABSTRACT

The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development.


Subject(s)
DNA, Antisense/pharmacology , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Solanum lycopersicum/physiology , Sucrose/metabolism , Caulimovirus/genetics , Genetic Vectors , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Promoter Regions, Genetic , RNA, Antisense/genetics , Tritium
4.
Arch Insect Biochem Physiol ; 42(1): 88-98, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10467059

ABSTRACT

Although several studies were carried out over the last 15 years to assess the nature and characteristics of digestive proteases in herbivorous insects, little is known about the relative importance of these enzymes in the hydrolysis of specific dietary proteins. In this study, we assessed the involvement of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say, Chrysomelidae) aspartate, cysteine, and serine digestive proteinases in the degradation of two model substrates: ribulose biphosphate carboxylase/oxygenase, the major protein in potato leaves, and the pro-region of papaya proteinase IV, a cysteine protease inhibitor (PI) susceptible to proteolysis by the insect "nontarget" proteases. As shown by the use of various combinations of diagnostic PIs specific to the different classes of CPB proteinases, the insect aspartate (cathepsin D-like) proteinase activity is important in initiating the hydrolysis of both proteins when the insect is feeding on potato, while cysteine (cathepsin B/cathepsin H-like) and serine (chymotrypsin-like) proteinase activities would be involved in subsequent steps of the hydrolytic process. Similar observations were made with diet-induced variants of the insect protease system, suggesting the importance of digestive cathepsin D and the sequential hydrolysis of dietary proteins in CPB, regardless of the diet ingested. Based on these observations, a preliminary model is proposed to explain dietary protein hydrolysis in CPB, also taking into account the information currently available about the distribution of digestive endo- and exopeptidases in the midgut of CPB. The potential of a wound-induced cathepsin D inhibitor from tomato in developing CPB-resistant transgenic potato lines is also discussed, after demonstrating the "pepstatin-like" effect of a recombinant form of this proteinaceous inhibitor against the insect cathepsin D. Arch. Copyright 1999 Wiley-Liss, Inc.

5.
Arch Biochem Biophys ; 365(1): 163-9, 1999 May 01.
Article in English | MEDLINE | ID: mdl-10222051

ABSTRACT

The major phosphorylation site of maize sucrose synthase (SuSy) is well conserved among plant species but absent in the deduced peptide sequence of the tomato SuSy cDNA (TOMSSF). In this study, we report the in vitro phosphorylation of 25-day-old tomato fruits SuSy on seryl residue(s) by an endogenous Ca2+-dependent protein kinase activity. Two distinct 32P-labeled peptides detected in the tryptic peptide map of in vitro 32P-radiolabeled tomato fruit SuSy were purified. Amino acid sequencing and phosphoamino acid analysis of the major 32P-labeled peptide revealed the presence of a SuSy isozyme in young tomato fruit having the N-terminus phosphorylation site present in other plant species. By using Fe(III)-immobilized metal affinity chromatography [Fe(III)-IMAC] as a final purification step of tomato fruit SuSy, two 32P-labeled tomato SuSy isoforms were separated from a nonradiolabeled SuSy fraction by using a pH gradient. The major 32P-SuSy isoform was phosphorylated exclusively at the seryl residue related to the phosphorylation site of maize SuSy. The multiphosphorylated state of the second radiolabeled SuSy fraction was indicated by a higher retention during Fe(III)-IMAC and by tryptic peptide mapping analysis. Kinetic analyses of SuSy isoforms purified by Fe(III)-IMAC have revealed that phosphorylation of the major phosphorylation site of tomato fruit SuSy was not sufficient by itself to modulate tomato SuSy activity, whereas the affinity for UDP increased about threefold for the multiphosphorylated SuSy isoform.


Subject(s)
Glucosyltransferases/isolation & purification , Phosphoproteins/isolation & purification , Protein Kinases/metabolism , Protein Processing, Post-Translational , Solanum lycopersicum/enzymology , Chromatography, Affinity/methods , Glucosyltransferases/metabolism , Peptide Fragments/isolation & purification , Phosphopeptides/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism
6.
Arch Insect Biochem Physiol ; 31(4): 451-64, 1996.
Article in English | MEDLINE | ID: mdl-8920105

ABSTRACT

The effects of the cystatins, human stefin A (HSA) and oryzacystatin I (OCI) on digestive cysteine proteinases of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the black vine weevil (BVW), Otiorynchus sulcatus, were assessed using complementary inhibition assays, cystatin-affinity chromatography, and recombinant forms of the two inhibitors. For both insects, either HSA and OCI used in excess (10 or 20 microM) caused partial and stable inhibition of total proteolytic (azocaseinase) activity, but unlike for OCI the HSA-mediated inhibitions were significantly increased when the inhibitor was used in large excess (100 microM). As demonstrated by complementary inhibition assays, this two-step inhibition of the insect proteases by HSA was due to the differential inactivation of two distinct cysteine proteinase populations in either insect extracts, the rapidly (strongly) inhibited population corresponding to the OCI-sensitive fraction. After removing the cystatin-sensitive proteinases from CPB and BVW midgut extracts using OCI- (or HSA-) affinity chromatography, the effects of the insect "non-target" proteases on the structural integrity of the two cystatins were assessed. While OCI remained essentially stable, HSA was subjected to hydrolysis without the accumulation of detectable stable intermediates, suggesting the presence of multiple exposed cleavage sites sensitive to the action of the insect proteases on this cystatin. This apparent susceptibility of HSA to proteolytic cleavage may partially explain its low efficiency to inactivate the insect OCI-insensitive cysteine proteinases when not used in large excess. It could also have major implications when planning the use of cystatin-expressing transgenic plants for the control of coleopteran pests.


Subject(s)
Coleoptera/enzymology , Cystatins/pharmacology , Cysteine Endopeptidases/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Animals , Base Sequence , Cystatin A , Cystatins/biosynthesis , Cysteine Endopeptidases/isolation & purification , DNA Primers , Digestive System/enzymology , Humans , Molecular Sequence Data , Recombinant Fusion Proteins
7.
Plant Cell Rep ; 14(9): 585-8, 1995 Jun.
Article in English | MEDLINE | ID: mdl-24185602

ABSTRACT

Transformation of potato (Solanum tuberosum L.) with cysteine proteinase inhibitor (PI) genes represents a potential way of controlling the major insect pest Colorado potato beetle (CPB; Leptinotarsa decemlineata Say). The present study describes the Agrobacterium-mediated transformation of potato (cv. Kennebec) with an oryzacystatin I (OCI) cDNA clone linked to a CaMV 35S promoter. The transgenic plants accumulated active OCI in potato leaves, as demonstrated by the papain-inhibitory activity of transgenic plant leaf extracts. In addition to their anti-papain activity, the extracts also caused a partial but significant inhibition of CPB digestive proteinases, similar to that observed with pure inhibitors. Recombinant OCI did not alter the activity of the major potato leaf endogenous proteinases, which seemed to be of the serine-type. Therefore we suggest that the OCI cDNA can be used for the production of CPB-resistant transgenic potato plants without interfering with endogenous proteinases of these plants.

9.
FEBS Lett ; 331(1-2): 173-6, 1993 Sep 27.
Article in English | MEDLINE | ID: mdl-8405400

ABSTRACT

The use of oryzacystatins I and II, two cysteine proteinase inhibitors naturally produced in rice grains, represents an attractive way for the control of Coleoptera insect pests. The present study was done to analyze the inhibitory effect of recombinant oryzacystatins produced in Escherichia coli as fusion proteins against digestive proteinases of the major pest Colorado potato beetle (Leptinotarsa decemlineata Say). Both inhibitors had a significant effect on total proteolytic activity, but maximal inhibitions ranged from 20 to 80% for pHs varying from 5.0 to 7.0, respectively. This pH-dependent efficiency of plant cystatins was due to the selective inactivation of potato beetle cathepsin H, as demonstrated by the use of inhibitors with different specificities against cathepsins B and H. These results demonstrate the importance of having an adequate knowledge of insect proteinases specifically recognized by the inhibitors to be used in pest control strategies.


Subject(s)
Cathepsins/antagonists & inhibitors , Coleoptera/enzymology , Cystatins/pharmacology , Cysteine Endopeptidases , Animals , Cathepsin H , Pest Control, Biological , Recombinant Fusion Proteins/pharmacology
10.
Plant Physiol ; 94(2): 516-23, 1990 Oct.
Article in English | MEDLINE | ID: mdl-16667743

ABSTRACT

The maize (Zea mays) leaf is a valuable system to study the sucrose import to sucrose export transition at the cellular level. Rapidly growing and fully heterotrophic cells in the basal part of the young leaf showed a high sucrose synthase (SS) activity. Leaf SS has been purified to homogeneity. By comparison with purified kernel SS isozymes, the leaf SS has been identified as SS(2). SS(1) protein and SS(2) protein were clearly separated by electrophoresis and the two monomers differed in size by 6 kilodaltons. Nevertheless, kinetic parameters of both enzymes were very similar. Immunodetection of SS protein showed that in young heterotrophic tissues SS(2) was a major protein accounting for 3% of the total protein. Concurrent with greening, SS activity decreased and the change of activity was explained by regulation of the protein level. In mature green tissues, which are synthetizing sucrose as evidenced by the presence of sucrose phosphate synthase activity, SS activity was almost completely absent. Results suggested that down regulation of SS(2) enzyme protein level was an early event in the transition from import to export status of the leaf.

SELECTION OF CITATIONS
SEARCH DETAIL
...