Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169481, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142001

ABSTRACT

Understanding the effects of land-use change on stock and composition of soil organic carbon (SOC) and nitrogen (N) is pivotal for sustainable agriculture and climate change adaption. However, previous studies have often overlooked the specific vegetation type in land-use changes. Therefore, a five-year lysimeter block experiment was conducted, involving non-vegetation, eulalia (C4 plant), and clover (C3 plant) to investigate the impacts of vegetation conversion from pasture on SOC and N dynamics and their natural stable isotopes. Non-vegetation caused 26.21 % and 25.88 % decreases in SOC and total N (TN) contents. Five-year eulalia and clover cultivation maintained stable SOC content, with clover exhibiting higher soil TN content. Eulalia-derived soil C was 1.64-7.58 g C kg-1 and SOC loss in eulalia treatment was 1.86-7.90 g C kg-1. Soil δ13C in eulalia increased at a rate of 0.90 ‰ year-1, significantly surpassing clover and non-vegetation treatments. Conversely, soil δ15N decreased over time, showing insignificant difference among all treatments. Eulalia exhibited significantly higher dry weight and δ13C but lower TN content compared with clover. However, no significant differences were observed in total C and δ15N between the two vegetation treatments. Non-vegetation exhibited higher dissolved organic C concentration than two vegetation treatments in 2017, decreasing over time. Dissolved TN and nitrate concentrations in leachate followed the order clover> non-vegetation> eulalia, with nitrate being the predominant form of N leaching from leachate. Our findings reveal that vegetation conversion affects soil C and N contents, and alters their natural isotopes as well as the leaching of labile soluble nutrients. Notably, non-vegetation consistently reduced SOC and TN contents, whereas eulalia cultivation maintained SOC content, improved C/N ratio and δ13C, and reduced N leaching compared with clover cultivation. These results highlight the potential of eulalia as a candidate plant for enhancing C sequestration and reducing N leaching in cold regions of Japan.

2.
J Biotechnol ; 343: 120-127, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34896159

ABSTRACT

Co-culture of microalgae and microorganisms, supported with the resulting synergistic effects, can be used for wastewater treatment, biomass production, agricultural applications and etc. Therefore, this study aimed to explore the role of Bacillus subtilis (B. subtilis) in tolerance against the harsh environment of seafood wastewater, at which these microalgal-bacterial flocs were formed by microalgae cultivation. In this present study, B. subtilis isolated from the cultivation medium of Chlorella vulgaris and exposed to different salinity (0.1-4% w/v sodium chloride) and various pH range to determine the tolerant ability and biofilm formation. Interestingly, this bacteria strain that isolated from microalgae cultivation medium showed the intense viability in the salt concentration exceeding up to 4% (w/v) NaCl but demonstrated the decrease in cell division as environmental culture undergoing over pH 10. Cell viability was recorded higher than 71% and 92% for B. subtilis inoculum in media with salt concentration greater than 20 gL-1 and external pH 6.5-9, respectively. This showed that B. subtilis isolated from microalgal-bacteria cocultivation exhibited its tolerant ability to survive in the extremely harsh conditions and thus, mitigating the stresses due to salinity and pH.


Subject(s)
Chlorella vulgaris , Microalgae , Microbiota , Bacillus subtilis , Biomass , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL