Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Diabetes Metab J ; 48(5): 864-881, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39192822

ABSTRACT

Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.


Subject(s)
Cellular Senescence , Immunosenescence , Insulin Resistance , Metabolic Diseases , T-Lymphocytes , Humans , Metabolic Diseases/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Inflammation/immunology , Aging/immunology , Obesity/immunology , T-Cell Senescence
2.
Cell Mol Life Sci ; 81(1): 314, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066814

ABSTRACT

This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Mitochondria , Osteoporosis , Animals , Adipose Tissue, Brown/metabolism , Female , Mice , Mitochondria/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoclasts/metabolism , Mice, Inbred C57BL , Bone Density , Thermogenesis , Ovariectomy/adverse effects , Bone and Bones/metabolism , Bone and Bones/pathology , Osteogenesis
3.
Endocrinol Metab (Seoul) ; 39(3): 521-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858821

ABSTRACT

BACKGRUOUND: Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls. METHODS: A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type. RESULTS: In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters. CONCLUSION: This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.


Subject(s)
Hip Fractures , Quadriceps Muscle , Sarcopenia , Humans , Male , Female , Aged , Hip Fractures/pathology , Sarcopenia/pathology , Quadriceps Muscle/pathology , Middle Aged , Pilot Projects , Aged, 80 and over , Hand Strength , Adult , Bone Density , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Young Adult , Aging/physiology , Aging/pathology , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Fast-Twitch/metabolism
4.
Pharm. pract. (Granada, Internet) ; 21(3): 1-7, jul.-sep. 2023. tab
Article in English | IBECS | ID: ibc-226160

ABSTRACT

This study aimed to determine factors associated with medication errors, and evaluate the results of interventions to reduce medication errors in inpatients treatment at Hoan My Minh Hai General Hospital, Vietnam. Methods: A single-blind, before-and-after and interventional study was conducted on 442 medical records of inpatients in the pre-intervention stage and 442 medical records of inpatients in the post-intervention stage at the Department of Pediatrics, Department of General Internal Medicine, Department of Cardiology - Endocrinology, Department of Surgery, Department of Obstetrics of Hoan My Minh Hai General Hospital from July 1, 2021, to March 31, 2022. Data were collected and processed using Excel 2016 and SPSS 26.0 software. Results: The medication errors rate decreased from 7.70% in the pre-intervention stage to 5.70% in the post-intervention stage, the difference was statistically significant (p<0.001). Medication errors before intervention occurred most often in the preparation and implementation stage (2.04%), after the intervention, the rate decreased to 1.81%. The replication stage had a high rate of medication errors (2.04%), after the intervention it decreased to 1.81%. The most common medication errors before intervention were wrong doses and wrong drugs (1.58%), after intervention, wrong dose errors rate decreased to 1.36%, the rate of wrong drug errors rate decreased to 1.13%. The total number of diseases ≥2 was significantly related to the occurrence of medication errors (p<0.05). Conclusion: Medication errors could occur at different stages of medication use processes. Pharmacist interventions appear to decrease the incidence of medication errors. (AU)


Subject(s)
Humans , Medication Errors/prevention & control , Hospitalization , Surgical Procedures, Operative , Vietnam , Single-Blind Method , Prescriptions
5.
Cell Death Dis ; 14(9): 618, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735474

ABSTRACT

Immunosenescence and exhaustion are involved in the development and progression of type 2 diabetes (T2D) and metabolic liver diseases, including fatty liver, fibrosis, and cirrhosis, in humans. However, the relationships of the senescence and exhaustion of T cells with insulin resistance-associated liver diseases remain incompletely understood. To better define the relationship of T2D with nonalcoholic fatty liver disease, 59 patients (mean age 58.7 ± 11.0 years; 47.5% male) with T2D were studied. To characterize their systemic immunophenotypes, peripheral blood mononuclear cells were analyzed using flow cytometry. Magnetic resonance imaging (MRI)-based proton density fat fraction and MRI-based elastography were performed using an open-bore, vertical-field 3.0 T scanner to quantify liver fat and fibrosis, respectively. The participants with insulin resistance had a significantly larger population of CD28 - CD57+ senescent T cells among the CD4+ and CD8 + T cells than those with lower Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) values. The abundances of senescent CD4+ and CD8 + T cells and the HOMA-IR positively correlated with the severity of liver fibrosis, assessed using MRI-based elastography. Interleukin 15 from hepatic monocytes was found to be an inducer of bystander activation of T cells, which is associated with progression of liver disease in the participants with T2D. Furthermore, high expression of genes related to senescence and exhaustion was identified in CD4+ and CD8 + T cells from the participants with nonalcoholic steatohepatitis or liver cirrhosis. Finally, we have also demonstrated that hepatic T-cell senescence and exhaustion are induced in a diet or chemical-induced mouse model with nonalcoholic steatohepatitis. In conclusion, we have shown that T-cell senescence is associated with insulin resistance and metabolic liver disease in patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Male , Animals , Mice , Middle Aged , Aged , Female , Diabetes Mellitus, Type 2/complications , Leukocytes, Mononuclear , T-Cell Exhaustion , Liver Cirrhosis , Disease Models, Animal
7.
Article in English | WPRIM (Western Pacific) | ID: wpr-966801

ABSTRACT

Background@#An excess of thyroid hormones in Graves’ disease (GD) has profound effects on systemic energy metabolism that are currently partially understood. In this study, we aimed to provide a comprehensive understanding of the metabolite changes that occur when patients with GD transition from hyperthyroidism to euthyroidism with methimazole treatment. @*Methods@#Eighteen patients (mean age, 38.6±14.7 years; 66.7% female) with newly diagnosed or relapsed GD attending the endocrinology outpatient clinics in a single institution were recruited between January 2019 and July 2020. All subjects were treated with methimazole to achieve euthyroidism. We explored metabolomics by performing liquid chromatography-mass spectrometry analysis of plasma samples of these patients and then performed multivariate statistical analysis of the metabolomics data. @*Results@#Two hundred metabolites were measured before and after 12 weeks of methimazole treatment in patients with GD. The levels of 61 metabolites, including palmitic acid (C16:0) and oleic acid (C18:1), were elevated in methimazole-naïve patients with GD, and these levels were decreased by methimazole treatment. The levels of another 15 metabolites, including glycine and creatinine, were increased after recovery of euthyroidism upon methimazole treatment in patients with GD. Pathway analysis of metabolomics data showed that hyperthyroidism was closely related to aminoacyl-transfer ribonucleic acid biosynthesis and branched-chain amino acid biosynthesis pathways. @*Conclusion@#In this study, significant variations of plasma metabolomic patterns that occur during the transition from hyperthyroidism to euthyroidism were detected in patients with GD via untargeted metabolomics analysis.

8.
PLoS One ; 16(12): e0258348, 2021.
Article in English | MEDLINE | ID: mdl-34936646

ABSTRACT

BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave. METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training. RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors. INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type.


Subject(s)
COVID-19/epidemiology , Health Knowledge, Attitudes, Practice , Personnel, Hospital , Adult , COVID-19/prevention & control , Cross-Sectional Studies , Education, Medical, Continuing/statistics & numerical data , Female , Humans , Male , Personnel, Hospital/statistics & numerical data , Socioeconomic Factors , Surveys and Questionnaires
9.
Pharmaceutics ; 13(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34834212

ABSTRACT

The development of new drugs that combine active ingredients for the treatment hypertension is critically essential owing to its offering advantages for both patients and manufacturers. In this study, for the first time, detailed development of a scalable process of film-coated bi-layer tablets containing sustained-release metoprolol succinate and immediate-release amlodipine besylate in a batch size of 10,000 tablets is reported. The processing parameters of the manufacturing process during dry mixing-, drying-, dry mixing- completion stages were systematically investigated, and the evaluation of the film-coated bi-layer tablet properties was well established. The optimal preparation conditions for metoprolol succinate layer were 6 min- dry mixing with a high-speed mixer (120 rpm and 1400 rpm), 30-min drying with a fluid bed dryer, and 5-min- mixing completion at 25 rpm. For the preparation of amlodipine besylate layer, the optimal dry-mixing time using a cube mixer (25 rpm) was found to be 5 min. The average weight of metoprolol succinate layers and bi-layer tablets were controlled at 240-260 mg and 384-416 mg, respectively. Shewhart R chart and X¯ charts of all three sampling lots were satisfactory, confirming that the present scalable process was stable and successful. This study confirms that the manufacturing process is reproducible, robust; and it yields a consistent product that meets specifications.

10.
Heliyon ; 6(7): e04522, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32743103

ABSTRACT

Open Access (OA) publishing, with ambitious movements such as Plan S, is engendering radical changes among academic publishers. Emerging countries need to keep publishing as well as adopt open access to catch up with the changes. Using exclusive data from the Social Sciences & Humanities Peer Awards (SSHPA) database, the study employed both descriptive statistics and a Bayesian linear regression model to examine the journals and publishers in which Vietnamese social scientists published during the period 2008-2019, and the potential of pursuing the OA movement in Vietnam. We found an increasing diversification in the publishing sources of Vietnamese social science researchers with growth rates of 9.8% and 14.1% per annum in the number of publishers and journals, respectively. Given that the proportion of Gold OA articles had a fourfold increase over the examined period, it seems that the Vietnamese academic community is adopting OA. Furthermore, Bayesian analysis results hint at positive associations of internal and external collaborative power (number of domestic and foreign authors, respectively) with the decision to publish in OA (ß b_TotalVN_OpenAccess = 0.22; ß b_TotalForeign_OpenAccess = 0.15). The results and its implications suggest that Vietnamese policymakers and university director boards should facilitate as well as control the quality of the scientific publishing and the OA movement.

SELECTION OF CITATIONS
SEARCH DETAIL