Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 28(12): 2548-2551, 2022 12.
Article in English | MEDLINE | ID: mdl-36417997

ABSTRACT

Nonhuman primates living in proximity to humans increase risks for sylvatic arbovirus transmission. We collected serum samples from nonhuman primates in Hlawga National Park near Yangon, Myanmar, and detected antibodies against chikungunya (33%) and Japanese encephalitis (4%) viruses. Buffer zones between primate and human communities might reduce cross-species arbovirus transmission.


Subject(s)
Arboviruses , Chikungunya Fever , Chikungunya virus , Animals , Humans , Myanmar/epidemiology , Chikungunya Fever/epidemiology , Primates
2.
J Med Primatol ; 51(5): 264-269, 2022 10.
Article in English | MEDLINE | ID: mdl-35794847

ABSTRACT

INTRODUCTION: In early 2020, the California National Primate Research Center implemented surveillance to address the threat of SARS-CoV-2 infection in its nonhuman primate colony. MATERIALS/METHODS: To detect antiviral antibodies, multi-antigen assays were developed and validated on enzyme immunoassay and multiplex microbead immunofluorescent assay (MMIA) platforms. To detect viral RNA, RT-PCR was also performed. RESULTS/CONCLUSION: Using a 4plex, antibody was identified in 16/16 experimentally infected animals; and specificity for spike, nucleocapsid, receptor binding domain, and whole virus antigens was 95.2%, 93.8%, 94.3%, and 97.1%, respectively on surveillance samples. Six laboratories compared this MMIA favorably with nine additional laboratory-developed or commercially available assays. Using a screen and confirm algorithm, 141 of the last 2441 surveillance samples were screen-reactive requiring confirmatory testing. Although 35 samples were reactive to either nucleocapsid or spike; none were reactive to both. Over 20 000 animals have been tested and no spontaneous infections have so far been confirmed across the NIH sponsored National Primate Research Centers.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/diagnosis , RNA, Viral , Sensitivity and Specificity
3.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Article in English | MEDLINE | ID: mdl-35443018

ABSTRACT

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antiviral Agents , COVID-19/therapy , Humans , Immunization, Passive , Macaca mulatta , RNA, Viral , COVID-19 Serotherapy
4.
Am J Vet Res ; 83(1): 15-22, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34757923

ABSTRACT

OBJECTIVE: To develop a testing algorithm that incorporates multiple assays to evaluate host cellular and humoral immunity and antigen detection concerning Mycobacterium tuberculosis complex (MTBC) infection in captive nonhuman primates. ANIMALS: Cohorts of captive-bred and wild-caught macaques from 5 different geographic regions. PROCEDURES: Macaques were tested for MTBC infection by use of a γ interferon tuberculosis (GIFT) assay, an interferon-γ release assay, and other assays. In the first 2 cohorts (n = 15 and 181), initial validation of the GIFT assay was performed by use of experimentally infected and unexposed control macaques. In the next 3 cohorts (n = 59, 42, and 11), results were obtained for opportunistically collected samples from macaques exposed during spontaneous outbreaks. RESULTS: Sensitivity and specificity of the GIFT assay in the control cohorts were 100% and 97%, respectively, and were variable but enhanced by incorporating results from multiple assays in spontaneous outbreaks. CLINICAL RELEVANCE: The detection and management of MTBC infection in captive nonhuman primate populations is an ongoing challenge, especially with animal imports and transfers. Despite standardized practices of initial quarantine with regular intradermal tuberculin skin testing, spontaneous outbreaks continue to be reported. Since infection encompasses a range of disease manifestations over time, a testing algorithm that incorporates multiple assays, such as the GIFT assay, to evaluate host cellular and humoral immunity in addition to agent detection is needed. Testing a combination of samples from controlled studies and spontaneous outbreaks of MTBC infection in nonhuman primates would advance the development and validation of a functional algorithm that incorporates promising tools such as the GIFT assay.


Subject(s)
Interferon-gamma Release Tests , Tuberculosis , Algorithms , Animals , Interferon-gamma Release Tests/veterinary , Primates , Tuberculosis/diagnosis , Tuberculosis/veterinary
5.
bioRxiv ; 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34494025

ABSTRACT

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY: The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.

6.
PLoS Pathog ; 17(7): e1009688, 2021 07.
Article in English | MEDLINE | ID: mdl-34228761

ABSTRACT

There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Lung/pathology , SARS-CoV-2/immunology , Virus Replication , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/virology , Disease Models, Animal , Female , Lung/diagnostic imaging , Macaca mulatta , Male , Multivariate Analysis , Radiography , Respiratory System/virology , SARS-CoV-2/physiology , Time Factors , Treatment Outcome , Virus Replication/immunology
7.
J Med Primatol ; 49(6): 322-331, 2020 12.
Article in English | MEDLINE | ID: mdl-32621339

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 and the ensuing COVID-19 pandemic prompted the need for a surveillance program to determine the viral status of the California National Primate Research Center non-human primate breeding colony, both for reasons of maintaining colony health and minimizing the risk of interference in COVID-19 and other research studies. METHODS: We collected biological samples from 10% of the rhesus macaque population for systematic testing to detect SARS-CoV-2 virus by RT-PCR and host antibody response by ELISA. Testing required the development and validation of new assays and an algorithm using in laboratory-developed and commercially available reagents and protocols. RESULTS AND CONCLUSIONS: No SARS-CoV-2 RNA or antibody was detected in this study; therefore, we have proposed a modified testing algorithm for sentinel surveillance to monitor for any future transmissions. As additional reagents and controls become available, assay development and validation will continue, leading to the enhanced sensitivity, specificity, accuracy, and efficiency of testing.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/veterinary , Macaca mulatta/virology , Monkey Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/veterinary , Animals , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/virology , Feces/virology , Humans , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , SARS-CoV-2 , Sentinel Surveillance/veterinary
8.
DNA Repair (Amst) ; 9(7): 737-44, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20434408

ABSTRACT

The repair of DNA double-strand breaks (DSBs) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and non-homologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after gamma-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction ( approximately 20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had approximately 2-fold higher chromatid-type CAs and a remarkable approximately 25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al., DNA Repair 4, 782-792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2.


Subject(s)
Chromosome Aberrations , DNA Breaks, Double-Stranded , DNA Repair/physiology , Gamma Rays , Recombination, Genetic/physiology , Animals , CHO Cells , Cell Cycle/genetics , Cell Cycle/radiation effects , Cell Survival/genetics , Cell Survival/radiation effects , Cricetinae , Cricetulus , Rad51 Recombinase/genetics
9.
Mutat Res ; 683(1-2): 91-7, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19896956

ABSTRACT

DNA double-strand breaks (DSB) are generally considered the most critical lesion induced by ionizing radiation (IR) and may initiate carcinogenesis and other disease. Using an immunofluorescence assay to simultaneously detect nuclear foci of the phosphorylated forms of histone H2AX and ATM kinase at sites of DSBs, we examined the response of 25 apparently normal and 10 DNA repair-deficient (ATM, ATR, NBN, LIG1, LIG4, and FANCG) primary fibroblast strains irradiated with low doses of (137)Cs gamma-rays. Quiescent G(0)/G(1)-phase cultures were exposed to 5, 10, and 25 cGy and allowed to repair for 24h. The maximum level of IR-induced foci (0.15 foci per cGy, at 10 or 30 min) in the normal strains showed much less inter-individual variation (CV approximately 0.2) than the level of spontaneous foci, which ranged from 0.2-2.6 foci/cell (CV approximately 0.6; mean+/-SD of 1.00+/-0.57). Significantly slower focus formation post-irradiation was observed in seven normal strains, similar to most mutant strains examined. There was variation in repair efficiency measured by the fraction of IR-induced foci remaining 24h post-irradiation, curiously with the strains having slower focus formation showing more efficient repair after 25 cGy. Interestingly, the ranges of spontaneous and residual induced foci levels at 24h in the normal strains were as least as large as those observed for the repair-defective mutant strains. The inter-individual variation in DSB foci parameters observed in cells exposed to low doses of ionizing radiation in this small survey of apparently normal people suggests that hypomorphic genetic variants in genomic maintenance and/or DNA damage signaling and repair genes may contribute to differential susceptibility to cancer induced by environmental mutagens.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Fibroblasts/radiation effects , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Nucleus/radiation effects , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Fluorescent Antibody Technique , Histones/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Radiation, Ionizing , Tumor Suppressor Proteins/metabolism
10.
Nucleic Acids Res ; 35(11): 3733-40, 2007.
Article in English | MEDLINE | ID: mdl-17517774

ABSTRACT

Fanconi anemia (FA) is a chromosomal instability disorder in which DNA-damage processing defects are reported for translesion synthesis (TLS), non-homologous end joining (NHEJ) and homologous recombination (HR; both increased and decreased). To reconcile these diverse findings, we compared spontaneous mutagenesis in FA and HR mutants of hamster CHO cells. In the fancg mutant we find a reduced mutation rate accompanied by an increased proportion of deletions within the hprt gene. Moreover, in fancg cells gene amplification at the CAD and dhfr loci is elevated, another manifestation of inappropriate processing of damage during DNA replication. In contrast, the rad51d HR mutant has a greatly elevated rate of hprt mutations, >85% of which are deletions. Our analysis supports the concept that HR faithfully restores broken replication forks, whereas the FA pathway acts more globally to ensure chromosome stability by promoting efficient end joining of replication-derived breaks, as well as TLS and HR.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Mutagenesis , Rad51 Recombinase/genetics , Recombination, Genetic , Animals , CHO Cells , Cricetinae , Cricetulus , Fanconi Anemia Complementation Group Proteins/physiology , Gene Amplification , Gene Deletion , Hypoxanthine Phosphoribosyltransferase/genetics , Models, Genetic , Sequence Deletion
11.
Mutat Res ; 602(1-2): 34-42, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17010390

ABSTRACT

Fanconi anemia (FA) is a rare cancer predisposition disease caused by mutations in at least 12 genes encoding proteins that cooperate to maintain genomic integrity. Variants of FA genes, including FANCG, have been identified in human population screening, but their potential reduction in protein function and role in cancer susceptibility is unclear. To test for possible dysfunction, we constructed plasmids containing four FANCG polymorphisms found in the human population and introduced them in the Fancg-deficient (fancg) KO40 line derived from AA8 hamster CHO cells. Expression of wild-type human FANCG provided fancg cells with complete phenotypic correction as assessed by resistance to the DNA crosslinking agent mitomycin C (MMC), thus providing a sensitive test for detecting the degree of complementation activity for the FANCG variants. We found that all four variants conferred levels of mitomycin C resistance as well as restoration of monoubiquitination of Fancd2, a key indicator of a functional FA protein pathway, similar to those observed in wild-type transfectants. Under the same conditions, the L71P amino acid substitution mutant, identified in an FA patient, gave no complementation. Using this novel system for determining FANCG functionality, we detect no decrement in function of the human FANCG polymorphic variants examined.


Subject(s)
Fanconi Anemia Complementation Group G Protein/genetics , Polymorphism, Genetic , Animals , CHO Cells , Cells, Cultured , Cricetinae , Dose-Response Relationship, Drug , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/radiation effects , Fanconi Anemia Complementation Group G Protein/physiology , Gene Frequency , Genetic Complementation Test , Humans , Methyl Methanesulfonate/pharmacology , Mitomycin/toxicity , Ubiquitin/metabolism
12.
DNA Repair (Amst) ; 5(8): 875-84, 2006 Aug 13.
Article in English | MEDLINE | ID: mdl-16815103

ABSTRACT

Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.


Subject(s)
Chromosomal Instability/genetics , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group Proteins/genetics , Models, Genetic , Mutagenesis/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Mutagenesis/drug effects , Mutagens/toxicity
13.
Nucleic Acids Res ; 34(9): 2833-43, 2006.
Article in English | MEDLINE | ID: mdl-16717288

ABSTRACT

In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.


Subject(s)
Adenosine Triphosphatases/chemistry , DNA-Binding Proteins/chemistry , Recombination, Genetic , Amino Acid Motifs , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , DNA Damage , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genetic Complementation Test , Humans , Immunoprecipitation , Molecular Sequence Data , Mutation , Rad51 Recombinase/metabolism , Two-Hybrid System Techniques
14.
Nucleic Acids Res ; 34(5): 1358-68, 2006.
Article in English | MEDLINE | ID: mdl-16522646

ABSTRACT

Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.


Subject(s)
Mutagenesis , Rad51 Recombinase/physiology , Recombination, Genetic , Animals , CHO Cells , Cell Survival , Chromosome Aberrations , Cricetinae , Cricetulus , DNA Damage , Gamma Rays , Gene Amplification , Gene Targeting , Hypoxanthine Phosphoribosyltransferase/genetics , Rad51 Recombinase/analysis , Rad51 Recombinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...