Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(15): 17104-17113, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645338

ABSTRACT

This study focuses on modifying the porous structure of acid-treated rice husk ash (ARHA) to enhance the thermal energy storage capacity of poly(ethylene glycol) (PEG) confined within shape-stabilized phase change materials. The modification process involved a cost-effective sol-gel method in which ARHA was initially dissolved in an alkaline solution and subsequently precipitated in an acidic environment. ARHA, being a mesoporous SiO2-based material with a high surface area but low pore volume, had limited capacity to adsorb PEG (50%). Furthermore, it hindered the crystallinity of impregnated PEG by fostering abundant interfacial hydrogen bonds (H-bonds), resulting in a diminished thermal energy storage efficiency. Following modification of the porous structure, the resulting material, termed mARHA, featured a three-dimensional macroporous network, providing ample space to stabilize a significant amount of PEG (70%) without any leakage. Notably, mARHA, with a reduced surface area, effectively mitigated interfacial H-bonds, consequently enhancing the crystallinity of impregnated PEG. This modification led to the recovery of thermal energy storage efficacy from 0 J/g for PEG/ARHA to 109.3 J/g for PEG/mARHA. Additionally, the PEG/mARHA composite displayed improved thermal conductivity, reliable thermal performance, and effective thermal management when used as construction materials. This work introduces a straightforward and economical strategy for revitalizing thermal energy storage in PEG composites confined within RHA-based porous supports, offering promising prospects for large-scale applications in building energy conservation.

2.
RSC Adv ; 13(44): 31176-31181, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37881766

ABSTRACT

In this exploratory study, Langmuir-Blodgett (LB) films of gold nanoparticles (Au NPs) were utilized for the first time to detect botulinum neurotoxin (BoNT) based on localized surface plasmon resonance (LSPR), acting as biosensors. Monolayers of Au NPs were initially transferred onto a transparent polymer substrate using the LB technique. This substrate was then used as the base material for subsequent depositions of capping ligands, and eventually, the BoNT at different concentrations. Upon each deposition, LSPR signals were recorded employing UV-Vis spectroscopy. As a result, it was demonstrated that the LB films transferred at a surface pressure of 35 mN m-1 were the optimal choice, capable of detecting BoNT at a concentration as low as 1 pg ml-1. Furthermore, it was discovered that the formation of Au NP clusters reduced the sensing capacity of the LB films. This sensor offers advantages such as easy fabrication and a quick detection process that utilizes visible light.

SELECTION OF CITATIONS
SEARCH DETAIL
...