Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38879117

ABSTRACT

INTRODUCTION: Sodium-glucose cotransporter-2 inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome and the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia. METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at 6 weeks of age to induce metabolic syndrome. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce chronic myocardial ischemia. After 2 weeks, swine received either control (CON) (n = 11) or CAN 300 mg by mouth daily (n = 10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared with CON (all P values < .05). The CAN group had a significant increase in capillary density (P = .02). There was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including Phospho-endothelial nitric oxide synthase, Endothelial nitric oxide synthase, vascular endothelial growth factor receptor-1, heat shock protein 70, and extracellular signal-regulated kinases (all P values < .05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of chronic myocardial ischemia in the setting of metabolic syndrome. This work further elucidates the mechanism of sodium-glucose cotransporter-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

2.
Surgery ; 176(2): 274-281, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38755032

ABSTRACT

BACKGROUND: We previously found that cardioplegic arrest and cardiopulmonary bypass are associated with altered coronary arteriolar response to serotonin in patients undergoing cardiac surgery. In this study, we investigated the effects of hypertension on coronary microvascular vasomotor tone in response to serotonin and alterations in serotonin receptor protein expression in the setting of cardioplegic arrest and cardiopulmonary bypass. METHODS: Coronary arterioles were dissected from harvested pre- and post-cardioplegic arrest and cardiopulmonary bypass right atrial tissue samples of patients undergoing cardiac surgery with normotension, well-controlled hypertension, and uncontrolled hypertension. Vasomotor tone was assessed by video-myography, and protein expression was measured with immunoblotting. RESULTS: Pre-cardioplegic arrest and cardiopulmonary bypass, serotonin induced moderate relaxation responses of coronary arterioles in normotension and well-controlled hypertension patients, whereas serotonin caused moderate contractile responses in uncontrolled hypertension patients. Post-cardioplegic arrest and cardiopulmonary bypass, serotonin caused contractile responses of coronary arterioles in all 3 groups. The post-cardioplegic arrest and cardiopulmonary bypass contractile response to serotonin was significantly higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups (P < .05). Pre-cardioplegic arrest and cardiopulmonary bypass, expression of the serotonin 1A receptor was significantly lower in the uncontrolled hypertension group compared with the well-controlled hypertension and normotension groups (P = .01 and P < .001). Serotonin 1B receptor expression was higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups post-cardioplegic arrest and cardiopulmonary bypass (P = .03 and P = .046). CONCLUSION: Uncontrolled hypertension is associated with an increased coronary contractile response of coronary microvessels to serotonin and altered serotonin receptor protein expression after cardioplegic arrest and cardiopulmonary bypass. These findings may contribute to a worse postoperative coronary spasm and worsened recovery of coronary perfusion in patients with uncontrolled hypertension after cardioplegic arrest and cardiopulmonary bypass and cardiac surgery.


Subject(s)
Cardiopulmonary Bypass , Coronary Vessels , Hypertension , Serotonin , Humans , Cardiopulmonary Bypass/adverse effects , Male , Female , Serotonin/metabolism , Serotonin/pharmacology , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/etiology , Middle Aged , Aged , Coronary Vessels/physiopathology , Arterioles/metabolism , Arterioles/physiopathology , Arterioles/drug effects , Heart Arrest, Induced/adverse effects , Vasoconstriction/drug effects , Receptors, Serotonin/metabolism , Vasodilation/drug effects
3.
Macromolecules ; 55(7): 2509-2516, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35444344

ABSTRACT

Zwitterionic ring-opening polymerization (ZROP) of sarcosine-derived N-thiocarboxyanhydrides (Me-NNTAs) can be induced by using 1,1,3,3-tetramethylguanidine (TMG) initiators in CH2Cl2 at 25 °C, rapidly producing well-defined polysarcosine polymers with controlled molecular weights (M n = 1.9-37 kg/mol) and narrow molecular weight distributions (D = 1.01-1.12). The reaction exhibits characteristics of a living polymerization, evidenced by pseudo-first-order polymerization kinetics, the linear increase of polymer molecular weight (M n) with conversion, and the successful chain extension experiments. The polymerization is proposed to proceed via propagating macro-zwitterions bearing a cationic 1,1,3,3-tetramethylguanidinium and an anionic thiocarbamate chain end. The TMG not only initiates the polymerization but also serves to stabilize the thiocarbamate chain end where the monomer addition occurs. Because of the enhanced hydrolytic stability of Me-NNTA, the polymerization can be conducted without the rigorous exclusion of moisture, further enhancing the appeal of the method to access well-defined polysarcosine.

SELECTION OF CITATIONS
SEARCH DETAIL
...