Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 280: 111858, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360552

ABSTRACT

Flash flood is one of the most dangerous hydrologic and natural phenomena and is considered as the top ranking of such events among various natural disasters due to their fast onset characteristics and the proportion of individual fatalities. Mapping the probability of flash flood events remains challenges because of its complexity and rapid onset of precipitation. Thus, this study aims to propose a state-of-the-art data mining approach based on a hybrid equilibrium optimized SysFor, namely, the HE-SysFor model, for spatial prediction of flash floods. A tropical storm region located in the Northwest areas of Vietnam is selected as a case study. For this purpose, 1866 flash-flooded locations and ten indicators were used. The results show that the proposed HE-SysFor model yielded the highest predictive performance (total accuracy = 93.8%, Kappa index = 0.875, F1-score = 0.939, and AUC = 0.975) and produced the better performance than those of the C4.5 decision tree (C4.5), the radial basis function-based support vector machine (SVM-RBF), the logistic regression (LReg), and deep learning neural network (DeepLNN) models in both the training and the testing phases. Among the ten indicators, elevation, slope, and land cover are the most important. It is concluded that the proposed model provides an alternative tool and may help for effectively monitoring flash floods in tropical areas and robust policies for decision making in mitigating the flash flood impacts.


Subject(s)
Cyclonic Storms , Floods , Data Mining , Rivers , Vietnam
2.
Sci Total Environ ; 764: 142928, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33127137

ABSTRACT

The present research examines the landslide susceptibility in Rudraprayag district of Uttarakhand, India using the conditional probability (CP) statistical technique, the boost regression tree (BRT) machine learning algorithm, and the CP-BRT ensemble approach to improve the accuracy of the BRT model. Using the four fold of data, the models' outcomes were cross-checked. The locations of existing landslides were detected by general field surveys and relevant records. 220 previous landslide locations were obtained, presented as an inventory map, and divided into four folds to calibrate and authenticate the models. For modelling the landslide susceptibility, twelve LCFs (landslide conditioning factors) were used. Two statistical methods, i.e. the mean absolute error (MAE) and the root mean square error (RMSE), one statistical test, i.e. the Freidman rank test, as well as the receiver operating characteristic (ROC), efficiency and precision were used for authenticating the produced landslide models. The results of the accuracy measures revealed that all models have good potential to recognize the landslide susceptibility in the Garhwal Himalayan region. Among these models, the ensemble model achieved a higher accuracy (precision: 0.829, efficiency: 0.833, AUC: 89.460, RMSE: 0.069 and MAE: 0.141) than the individual models. According to the outcome of the ensemble simulations, the BRT model's predictive accuracy was enhanced by integrating it with the statistical model (CP). The study showed that the areas of fallow land, plantation fields, and roadsides with elevations of more than 1500 m. with steep slopes of 24° to 87° and eroding hills are highly susceptible to landslides. The findings of this work could help in minimizing the landslides' risk in the Western Himalaya and its adjoining areas with similar landscapes and geological characteristics.

3.
Article in English | MEDLINE | ID: mdl-32650595

ABSTRACT

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.


Subject(s)
Landslides , Machine Learning , Remote Sensing Technology , Algorithms , Geographic Information Systems , Malaysia
4.
Article in English | MEDLINE | ID: mdl-32545634

ABSTRACT

The declining water level in Lake Urmia has become a significant issue for Iranian policy and decision makers. This lake has been experiencing an abrupt decrease in water level and is at real risk of becoming a complete saline land. Because of its position, assessment of changes in the Lake Urmia is essential. This study aims to evaluate changes in the water level of Lake Urmia using the space-borne remote sensing and GIS techniques. Therefore, multispectral Landsat 7 ETM+ images for the years 2000, 2010, and 2017 were acquired. In addition, precipitation and temperature data for 31 years between 1986 and 2017 were collected for further analysis. Results indicate that the increased temperature (by 19%), decreased rainfall of about 62%, and excessive damming in the Urmia Basin along with mismanagement of water resources are the key factors in the declining water level of Lake Urmia. Furthermore, the current research predicts the potential environmental crisis as the result of the lake shrinking and suggests a few possible alternatives. The insights provided by this study can be beneficial for environmentalists and related organizations working on this and similar topics.


Subject(s)
Lakes , Water , Environmental Monitoring , Iran , Water Supply
5.
Healthcare (Basel) ; 8(2)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485875

ABSTRACT

Corona viruses are a large family of viruses that are not only restricted to causing illness in humans but also affect animals such as camels, cattle, cats, and bats, thus affecting a large group of living species. The outbreak of Corona virus in late December 2019 (also known as COVID-19) raised major concerns when the outbreak started getting tremendous. While the first case was discovered in Wuhan, China, it did not take long for the disease to travel across the globe and infect every continent (except Antarctica), killing thousands of people. Since it has become a global concern, different countries have been working toward the treatment and generation of vaccine, leading to different speculations. While some argue that the vaccine may only be a few weeks away, others believe that it may take some time to create the vaccine. Given the increasing number of deaths, the COVID-19 has caused havoc worldwide and is a matter of serious concern. Thus, there is a need to study how the disease has been propagating across continents by numbers as well as by regions. This study incorporates a detailed description of how the COVID-19 outbreak started in China and managed to spread across the globe rapidly. We take into account the COVID-19 outbreak cases (confirmed, recovered, death) in order to make some observations regarding the pandemic. Given the detailed description of the outbreak, this study would be beneficial to certain industries that may be affected by the outbreak in order to take timely precautionary measures in the future. Further, the study lists some industries that have witnessed the impact of the COVID-19 outbreak on a global scale.

6.
Article in English | MEDLINE | ID: mdl-32316191

ABSTRACT

Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms-Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine-in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.


Subject(s)
Algorithms , Bayes Theorem , Landslides , Logistic Models , Neural Networks, Computer , Support Vector Machine , Iran
SELECTION OF CITATIONS
SEARCH DETAIL
...