Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 27(10): 2215-2229, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744362

ABSTRACT

Vietnamese ginseng (Panax vietnamensis Ha et Grushv.), also known as Ngoc Linh ginseng, is a high-value herb in Vietnam. Vietnamese ginseng has been proven to be effective in enhancing the immune system, human memory, anti-stress, anti-inflammatory, anti-cancer, and prevent aging. The present study reports the first draft whole-genome of Vietnamese ginseng and the identification of potential genes involved in the triterpenoid metabolic pathway. De novo whole-genome assembly was performed successfully from a data of approximately 139 Gbps of 394,802,120 high quality reads to generate 9815 scaffolds with an N50 value of 572,722 bp from the leaf of Vietnamese ginseng. The assembled genome of Vietnamese ginseng is 3,001,967,204 bp long containing 79,374 gene models. Among them, there are 55,012 genes (69.30%) were annotated by various public molecular biology databases. The potential genes involved in triterpenoid saponin biosynthesis in Vietnamese ginseng and their metabolic pathway were also predicted." Three genes encoding squalene monooxygenase isozymes in Vietnamese ginseng were cloned, sequenced and characterized. Moreover, expression levels of several key genes involved in terpenoid biosynthesis in different parts of Vietnamese ginseng were also analyzed. The SSR markers were detected by various programs from both of assembly full dataset of Vietnamese ginseng genome and predicted genes. The present work provided important data of the draft whole-genome of Vietnamese ginseng for further studies to understand the role of genes involved in ginsenoside biosynthesis and their metabolic pathway at the molecular level of this rare medicinal species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01076-1.

2.
Plant Sci ; 312: 111045, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34620443

ABSTRACT

The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.85-fold higher than controls, which resulted in a decrease in chlorophyll content, increase in number of mature embryos and stomata length. These results revealed that MG regulated the induction, differentiation and senescence of somatic embryos via a biochemical interaction pathway.


Subject(s)
Abscisic Acid/metabolism , Begoniaceae/growth & development , Begoniaceae/metabolism , Cell Differentiation/drug effects , Energy Metabolism , Plant Growth Regulators/metabolism , Seeds/growth & development , Seeds/metabolism , Cell Culture Techniques , Plant Somatic Embryogenesis Techniques
3.
Biotechnol Biotechnol Equip ; 29(2): 299-308, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-26019644

ABSTRACT

In recent years, LED (light-emitting diode) has been the subject of research within the field of plant growth and development. However, there has been little discussion about using LED in vitro cultures of Panax vietnamensis, one of the important medicinal plants belonging to the Panax genus. This study examines the influence of various LED lamps on callus growth and plant formation of P. vietnamensis. Results show significant differences in growth and development, as various light conditions were suitable for different stages. Callus of 70 mg in fresh weight cultured under yellow LEDs resulted in growth of 1197 mg in fresh weight and 91.7 mg of dry weight, within a period of three months. The most effective plant formation was obtained when embryogenic calli were cultured under the combination of 60% red LED and 40% blue LED with an average of 11.21 plantlets per explant; the shoot clump fresh weight and dry weight were of 1147 and 127 mg, respectively, and the average plant height was 3.1 cm. It was also shown that this light condition was the most efficient for P. vietnamensis in vitro plant growth and development. This study provided additional evidence regarding the influence of different LEDs on ginsenoside production applying high-performance liquid chromatography (HPLC) analysis with photo-diode array (PDA) detection at ultraviolet (UV) wavelength 203 nm. The highest MR2 content was recorded when plants maintained under 20% red LED combined with 80% blue LED. However, the highest Rg1 and Rb1 content was found under fluorescent light. The results presented might provide new strategies using LEDs for adequate micropropagation protocols of P. vietnamensis.

4.
Methods Mol Biol ; 11013: 455-62, 2013.
Article in English | MEDLINE | ID: mdl-23179719

ABSTRACT

White or light purple flower color Torenia (Torenia fournieri Lind.) varieties were successfully developed from the parental variety having violet flowers. This was accomplished by reducing Fe micronutrient in the culture media for the induction of in vitro flowering. The flower induction was highest in modified Murashige and Skoog (MS) medium containing ½ strength of macroelements, microelements, organic additives, and full Fe (M1) when compared to MS medium containing ½ strength of macronutrients, micronutrients, full Fe, and full organic additives (M2). The flower color was stable in two new Torenia varieties through three generations ex vitro. The results showed a wide range of somaclonal variation in flower colors; early flowering occurred in MS medium containing ½ strength of macroelements, microelements, Fe, and full strength of organic additives (M3). The selection of desirable somaclones and their micropropagation in subsequent generations led to the development of new and stable Torenia lines.


Subject(s)
Culture Techniques/methods , Flowers/anatomy & histology , Pigmentation , Scrophulariaceae/anatomy & histology , Scrophulariaceae/growth & development , Acclimatization , Chromosomes, Plant/genetics , Culture Media/chemistry , Flow Cytometry , Flowers/growth & development , Plant Shoots/growth & development , Plant Shoots/physiology , Ploidies , Scrophulariaceae/genetics , Scrophulariaceae/physiology , Sterilization
SELECTION OF CITATIONS
SEARCH DETAIL
...