Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Asian J Androl ; 25(6): 687-694, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37282383

ABSTRACT

Recent studies revealed the relationship among homologous recombination repair (HRR), androgen receptor (AR), and poly(adenosine diphosphate-ribose) polymerase (PARP); however, the synergy between anti-androgen enzalutamide (ENZ) and PARP inhibitor olaparib (OLA) remains unclear. Here, we showed that the synergistic effect of ENZ and OLA significantly reduced proliferation and induced apoptosis in AR-positive prostate cancer cell lines. Next-generation sequencing followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed the significant effects of ENZ plus OLA on nonhomologous end joining (NHEJ) and apoptosis pathways. ENZ combined with OLA synergistically inhibited the NHEJ pathway by repressing DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and X-ray repair cross complementing 4 (XRCC4). Moreover, our data showed that ENZ could enhance the response of prostate cancer cells to the combination therapy by reversing the anti-apoptotic effect of OLA through the downregulation of anti-apoptotic gene insulin-like growth factor 1 receptor ( IGF1R ) and the upregulation of pro-apoptotic gene death-associated protein kinase 1 ( DAPK1 ). Collectively, our results suggested that ENZ combined with OLA can promote prostate cancer cell apoptosis by multiple pathways other than inducing HRR defects, providing evidence for the combined use of ENZ and OLA in prostate cancer regardless of HRR gene mutation status.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Receptors, Androgen/genetics , Nitriles , Apoptosis
2.
Chin J Integr Med ; 24(6): 415-422, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28028720

ABSTRACT

OBJECTIVES: To investigate the mechanism of Liuwei Dihuang Pill (, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. METHODS: In this study, 205 cases of PMOP were divided into the PMOP Shen-yin deficiency group (Group A), PMOP Shen-yang deficiency group (Group B), PMOP without Shen deficiency group (Group C), and control group (Group N). Real-time polymerase chain reaction (RT-PCR) and Western blot techniques were used to observe the effects of LDP treatment on the cardiotrophin-like cytokine factor 1 (CLCF1), ankyrin repeat and SOCS box containing 1 (ASB1), and prokineticin 2 (PROK2) genes and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. RESULTS: The mRNA (P<0.05) and protein (P<0.01) expression levels of the CLCF1 gene in Group A were significantly lower than the corresponding levels in Group N. After LDP treatment for 3 months, the mRNA expression levels of the CLCF1 gene were obviously up-regulated (P<0.01). After 6-month treatment, the expression levels of CLCF1 mRNA and protein were significantly up-regulated (both P<0.01), and the average bone density of the top femur had significantly increased (P<0.05). In vitro, CLCF1 overexpression resulted in a significant increase in the total protein and phosphorylated protein levels of JAK2 and STAT3. CONCLUSIONS: The CLCF1 gene is an important gene associated with PMOP Shen-yin deficiency and the therapeutic effects of LDP may be mediated by up-regulation of CLCF1 gene expression and activation of the JAK/STAT signaling pathway.


Subject(s)
Cytokines/genetics , Drugs, Chinese Herbal/therapeutic use , Janus Kinases/metabolism , Osteoporosis, Postmenopausal/drug therapy , STAT Transcription Factors/metabolism , Signal Transduction , Up-Regulation , Yin Deficiency/drug therapy , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Female , Gene Expression Regulation , Humans , Middle Aged , Osteoporosis, Postmenopausal/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Yin Deficiency/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...