Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 227: 322-328, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274438

ABSTRACT

Fourier transform near-infrared (FT-NIR) spectroscopy and chemometrics were adopted for the rapid analysis of a toxic additive, maleic acid (MA), which has emerged as a new extraneous adulterant in cassava starch (CS). After developing an untargeted screening method for MA detection in CS using one-class partial least squares (OCPLS), multivariate calibration models were subsequently developed using least squares support vector machine (LS-SVM) to quantitatively analyze MA. As a result, the OCPLS model using the second-order derivative (D2) spectra detected 0.6%(w/w) adulterated MA in CS, with a sensitivity of 0.954 and specificity of 0.956. The root mean squared error of prediction (RMSEP) was 0.192(w/w, %) by using the standard normal variate (SNV) transformation LS-SVM. In conclusion, the potential of FT-NIR spectroscopy and chemometrics was demonstrated for application in rapid screening and quantitative analysis of MA in CS, which also implies that they have other promising applications for untargeted analysis.


Subject(s)
Food Contamination/analysis , Maleates/analysis , Manihot/chemistry , Spectroscopy, Near-Infrared/methods , Starch/chemistry , Calibration , Least-Squares Analysis , Spectroscopy, Near-Infrared/instrumentation , Support Vector Machine
2.
Anal Chim Acta ; 963: 119-128, 2017 Apr 22.
Article in English | MEDLINE | ID: mdl-28335965

ABSTRACT

Fluorescent "turn-off" sensors based on water-soluble quantum dots (QDs) have drawn increasing attention owing to their unique properties such as high fluorescence quantum yields, chemical stability and low toxicity. In this work, a novel method based on the fluorescence "turn-off" model with water-soluble CdTe QDs as the fluorescent probes for differentiation of 29 different famous green teas is established. The fluorescence of the QDs can be quenched in different degrees in light of positions and intensities of the fluorescent peaks for the green teas. Subsequently, with aid of classic partial least square discriminant analysis (PLSDA), all the green teas can be discriminated with high sensitivity, specificity and a satisfactory recognition rate of 100% for training set and 98.3% for prediction set, respectively. Especially, the "turn-off" fluorescence PLSDA model based on second-order derivatives (2nd der) with reduced least complexity (LVs = 3) was the most effective one for modeling. Most importantly, we further demonstrated the established "turn-off" fluorescent sensor mode has several significant advantages and appealing properties over the conventional fluorescent method for large-class-number classification (LCNC) of green teas. This work is, to the best of our knowledge, the first report on the rapid and effective identification of so many kinds of famous green teas based on the "turn-off" model of QDs combined with chemometrics, which also implies other potential applications on complex LCNC classification system with weak fluorescence or even without fluorescence to achieve higher detective response and specificity.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Fluorescent Dyes/chemistry , Informatics , Limit of Detection , Quantum Dots/chemistry , Tea/chemistry , Cadmium Compounds/chemistry , Solubility , Spectrometry, Fluorescence , Tellurium/chemistry , Time Factors , Water/chemistry
3.
Anal Chim Acta ; 916: 84-91, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27016442

ABSTRACT

As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs.


Subject(s)
Pesticides/analysis , Quantum Dots , Limit of Detection , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...