Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Chem Soc Rev ; 53(11): 5904-5955, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717257

ABSTRACT

Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.

2.
Glia ; 72(5): 857-871, 2024 May.
Article in English | MEDLINE | ID: mdl-38234042

ABSTRACT

Tumor-associated astrocytes (TAAs) in the glioblastoma microenvironment play an important role in tumor development and malignant progression initiated by glioma stem cells (GSCs). In the current study, normal human astrocytes (NHAs) were cultured and continuously treated with GSC-derived exosomes (GSC-EXOs) induction to explore the mechanism by which GSCs affect astrocyte remodeling. This study revealed that GSC-EXOs can induce the transformation of NHAs into TAAs, with relatively swollen cell bodies and multiple extended processes. In addition, high proliferation, elevated resistance to temozolomide (TMZ), and increased expression of TAA-related markers (TGF-ß, CD44, and tenascin-C) were observed in the TAAs. Furthermore, GSC-derived exosomal miR-3065-5p could be delivered to NHAs, and miR-3065-5p levels increased significantly in TAAs, as verified by miRNA expression profile sequencing and Reverse transcription polymerase chain reaction. Overexpression of miR-3065-5p also enhanced NHA proliferation, elevated resistance to TMZ, and increased the expression levels of TAA-related markers. In addition, both GSC-EXO-induced and miR-3065-5p-overexpressing NHAs promoted tumorigenesis of GSCs in vivo. Discs Large Homolog 2 (DLG2, downregulated in glioblastoma) is a direct downstream target of miR-3065-5p in TAAs, and DLG2 overexpression could partially reverse the transformation of NHAs into TAAs. Collectively, these data demonstrate that GSC-EXOs induce the transformation of NHAs into TAAs via the miR-3065-5p/DLG2 signaling axis and that TAAs can further promote the tumorigenesis of GSCs. Thus, precisely blocking the interactions between astrocytes and GSCs via exosomes may be a novel strategy to inhibit glioblastoma development, but more in-depth mechanistic studies are still needed.


Subject(s)
Exosomes , Glioblastoma , Glioma , MicroRNAs , Humans , Glioblastoma/pathology , Astrocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Glioma/pathology , Temozolomide/pharmacology , Temozolomide/metabolism , Neoplastic Stem Cells/metabolism , Carcinogenesis/genetics , Cell Proliferation , Tumor Microenvironment , Tumor Suppressor Proteins/metabolism , Guanylate Kinases/metabolism
3.
Adv Mater ; 35(28): e2300510, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029773

ABSTRACT

Fabricating solution-processible host material for thermally activated delayed fluorescence (TADF) emitter remains a formidable challenge for organic light-emitting diodes (OLEDs). In this work, two new host materials, namely 3CzAcPy and 9CzAcPy, are found to exhibit high triplet energy levels, high thermal stability, and excellent film morphology from a solution process. An in-depth analysis on the photophysical data and device performance reveals the isomeric effect of the host materials has a significant impact not only on the host properties, but also on the host-dopant interactions and thus the performance of the resulting solution-processed TADF OLEDs. Impressively, the new hosts are proven to be suitable for both donor-acceptor type and multi-resonance TADF emitters, achieving state-of-the-art device performance. By using the new host 9CzAcPy, solution-processed OLED based on a donor-acceptor TADF emitter of DPAC-PCN, a maximum external quantum efficiency (EQE) of 29.5% is achieved, and solution-processed narrowband OLED based on a multiple-resonance TADF emitter of BN-CP1 acquires a maximum EQE of 26.6%. These efficiencies represent the highest values among the solution-processed TADF OLEDs. This study highlights the significance of host-dopant interactions in modulating the electroluminescence performance of TADF emitters, and provides an effective design principle for solution-processible host materials.


Subject(s)
Vibration , Fluorescence , Isomerism
4.
Ecotoxicol Environ Saf ; 251: 114521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641864

ABSTRACT

Microplastics (MPs) has shown adsorption of hydrophilic organic matters (HOMs) in aqueous environments. However, it is still difficult to predict the adsorption behaviors of HOMs by different MPs, especially in authentic water systems. In this study, the adsorption behaviors and mechanisms of norfloxacin (NOR) onto polyamide (PA) MPs were investigated in both simulated and real surface water. The results showed that the adsorption equilibrium of NOR by PA in simulated surface water could be achieved within 15 h, while the adsorption rate of NOR in real surface was slowed down, with the equilibrium time of 25 h. Pseudo-second-order model could well describe the adsorption kinetics data. The experimental maximum adsorption capacity of NOR on PA in real surface water (e. g. 132.54 ug/g) was dramatically reduced by 37.5 % compared with that in simulated surface water (e. g. 212.25 ug/g), and the adsorption isotherm would obey Freundlich model. Besides, the leaching of NOR from the surface of PA could occur obviously at acidic environment. Furthermore, the salinity and natural organic matter exhibited significantly adverse effects on the NOR adsorption. Finally, the results of 2D Fourier transform infrared correlation spectroscopy and X-ray photoelectron spectroscopy indicated that the electrostatic, H-bond and van der Waals interactions were involved in the adsorption. More importantly, the sequential functional groups in the adsorption process followed the orders: 1638 (CO) > 1542 amide II (-NH-CO) > 717 (CH2) > 1445 (CO) > 973 amide IV (CONH). This study could provide an insight into the interactions between PA and NOR in different water environments.


Subject(s)
Water Pollutants, Chemical , Water , Microplastics , Norfloxacin , Plastics/chemistry , Spectroscopy, Fourier Transform Infrared , Photoelectron Spectroscopy , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Nylons , Adsorption , Kinetics
5.
J Cancer Res Clin Oncol ; 149(7): 2757-2769, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35776199

ABSTRACT

PURPOSE: A barrier to widespread adoption of chimeric antigen receptor (CAR) T-cell therapy is toxicity. To address this, we recently developed a novel antibody-T-cell receptor (AbTCR) platform (trademarked as ARTEMIS®) which was designed to leverage natural immune receptor signaling and regulation. The AbTCR platform includes a gamma/delta (γδ) TCR-based AbTCR construct and a separate co-stimulatory molecule, both engineered to be tumor-specific. Here, we aim to assess the safety and preliminary efficacy of a CD19-directed AbTCR T-cell therapy. METHODS: We generated ET019003 T cells, which are autologous CD19-directed AbTCR T cells. We then conducted an early phase I study to evaluate the safety and preliminary efficacy of ET019003 T cells for the treatment of CD19-positive relapsed/refractory (r/r) B-cell lymphoma. RESULTS: Sixteen patients enrolled in this study and 12 patients were treated. Of the 12 patients treated, 6 patients (50%) achieved a complete response (CR), and 4 (33%) achieved a partial response (PR) (best objective response rate [ORR] of 83%). CRs were durable, including 2 patients with ongoing CRs for 22.7 months and 23.2 months. ET019003 was well-tolerated with an attractive safety profile. No patients experienced severe (grade ≥ 3) cytokine release syndrome (CRS) and only 1 patient experienced immune effector cell-associated neurotoxicity syndrome (ICANS) of any grade. Significant elevations of cytokine levels were not seen, even in patients with marked expansion of ET019003 T cells. CONCLUSION: This study provides initial clinical validation of the AbTCR platform as a novel cancer treatment with the potential to provide durable clinical benefit with low toxicity. TRIAL REGISTRATION: NCT03642496; Date of registration: August 22, 2018.


Subject(s)
Lymphoma, B-Cell , Neurotoxicity Syndromes , Humans , Receptors, Antigen, T-Cell , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/etiology , Neurotoxicity Syndromes/etiology , Immunotherapy, Adoptive/adverse effects , Antibodies , Antigens, CD19 , Cell- and Tissue-Based Therapy
6.
Chinese Journal of Pathology ; (12): 1204-1209, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012394

ABSTRACT

Objective: To investigate the clinicopathological features, molecular genetic features, differential diagnosis and prognosis of ELOC mutated renal cell carcinoma. Methods: From January 2015 to June 2022, 11 cases of renal cell carcinoma with clear-cell morphology, expression of CAⅨ and CK7 and no 3p deletion were collected. Two cases of ELOC mutant renal cell carcinoma were diagnosed using whole exome sequencing (WES). The clinical features, morphology, immunophenotype, FISH and WES results were analyzed. The relevant literature was reviewed. Results: The two patients were both male, aged 29 and 51 years, respectively. They were both found to have a renal mass by physical examination. The maximum diameters of the tumors were 3.5 cm and 2.0 cm, respectively. At the low magnification, the tumors were well-defined. The tumor cells showed a pushing border and were separated by thick fibrous bands, forming nodules. The tumor cells were arranged in a variety of patterns, including tubular, papillary, solid nest or alveolar. At high magnification, the tumor cells were large, with well-defined cell borders and clear cytoplasm or fine eosinophilic granules. CAⅨ was diffusely box-like positive in both cases. Case 1 was partially and moderately positive for CK7, strongly positive for CD10, diffusely and moderately positive for P504S, and weakly positive for 34βE12. In case 2, CK7 and CD10 were both partially, moderately positive and P504s were diffusely positive, but 34βE12 was negative. FISH results showed that both cases had no 3p deletion. ELOC c.235T>A (p.Y79N) mutation was identified using WES in case 1, while ELOC c.236_237inv (p.Y79C) mutation was identified in case 2. Conclusions: As a new clinical entity, ELOC mutated renal cell carcinoma may be underdiagnosed due to its overlap with clear cell renal cell carcinoma in morphology and immunophenotype. The diagnosis of renal cell carcinoma with ELOC mutation should be confirmed by morphology, immunohistochemistry, FISH and gene mutation detection. However, more additional cases are needed to explain its biological behavior and prognosis.


Subject(s)
Humans , Male , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/pathology , Chromosome Aberrations , Kidney Neoplasms/pathology , Molecular Biology , Mutation , Prognosis
7.
J Am Chem Soc ; 144(50): 22976-22984, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36475679

ABSTRACT

Multiresonance thermal activated delayed fluorescence (MR-TADF) materials with an efficient spin-flip transition between singlet and triplet excited states remain demanding. Herein, we report an MR-TADF compound (BN-Se) simultaneously possessing efficient (reverse) intersystem crossing (ISC/RISC), fast radiative decay, close-to-unity quantum yield, and narrowband emission by embedding a single selenium atom into a common 4,4'-diazaborin framework. Benefitting from the high RISC efficiency accelerated by the heavy-atom effect, organic light-emitting diodes (OLEDs) based on BN-Se manifest excellent performance with an external quantum efficiency of up to 32.6% and an ultralow efficiency roll-off of 1.3% at 1000 cd m-2. Furthermore, the high ISC efficiency and small inherent energy loss also render BN-Se a superior photosensitizer to realize the first example of visible (λex > 450 nm)-to-UV (λem < 350 nm) triplet-triplet annihilation upconversion, with a high efficiency (21.4%) and an extremely low threshold intensity (1.3 mW cm-2). This work not only aids in designing advanced pure organic molecules with fast exciton dynamics but also highlights the value of MR-TADF compounds beyond OLED applications.

8.
Water Res ; 224: 119024, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36099764

ABSTRACT

The interaction between microplastics (MPs) and hydrophilic organic contaminants (HOCs) in natural water environment has recently raised great public attentions due to the potential toxicity to humans. However, the quantitative assessment is less studied. In this study, the interaction between ciprofloxacin (CIP) and ofloxacin (OFL) (two important HOCs) and virgin and aged polystyrene (PS) was investigated. The aged PS showed higher adsorption rate and capacity than the virgin PS, due to its larger surface area and more O-containing groups. The pH-dependent adsorption of CIP was higher than OFL on both virgin and aged PS; the maximum adsorption for both HOCs occurred at pH 5. The sequential orders of functional groups for the adsorption were discovered according to the study by the 2D correlation Fourier transform infrared spectroscopy. Several mechanisms existed for the interaction: (1) at 3.0 < pH < 5.0, the electrostatic attraction (EA) was inhibited while H-bond (HB) was dominant, accounting for > 60% of the total uptake; (2) at 5.0 < pH < 8.0, the contribution of EA increased to around 50-60% while HB decreased to 30-40%; (3) at 8.0 < pH < 10.0, EA, HB and π-π conjugation caused 30-40%, 25-40% and 20-45% of the total uptake, respectively; (4) at 10.0 < pH < 12.0, π-π conjugation accounted for 90-100%. Notably, higher adsorption of CIP was mainly attributed to the presence of secondary amino groups and its higher pKa value, correspondingly leading to the additional ordinary HB and negative charge-assisted HB, and EA interactions with PS. This study further provides clear evidences on the risk of MPs and HOCs on humans and aqueous living organisms.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Aged , Ciprofloxacin/chemistry , Humans , Ofloxacin/chemistry , Plastics , Polystyrenes , Water/chemistry , Water Pollutants, Chemical/analysis
9.
ACS Nano ; 16(8): 12452-12461, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35938975

ABSTRACT

The detection of circularly polarized light (CPL) has aroused wide attention from both the scientific and industrial communities. However, from the optical activity of the chiral layer in the conventional CPL photodetectors, the sign inversion property is difficult to be achieved. As a result, great challenges arise during the preparation of miniaturized and integrated devices for tunable CPL detection applications. Along these lines, in this work, by taking advantage of the CPL-induced chirality characteristics of the achiral poly(9,9-di-n-hexylfluorene-alt-benzothiadiazole) (F6BT) and the good crystalline and electrical properties of the poly(3-hexylthiophene) (P3HT) film, an optically programmable CPL photodetector was fabricated. Interestingly, the device exhibited excellent discrimination between left- and right-handed CPL, while the maximum anisotropy factor of responsivity was 0.425. On top of that, the rigorously controlled chirality of the F6BT and the capability to be switched by the handedness of CPL was leveraged to realize the switchable detection of both L-CPL and R-CPL. Furthermore, a CPL photodetector array was fabricated, and the image processing and cryptographic characteristics were demonstrated. The proposed device configuration can find application in various scientific fields, including photonics, emission, conversion, or sensing with CPL but also is anticipated to play a key role for imaging and anticounterfeiting applications.

10.
Natl Sci Rev ; 9(7): nwac076, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35832772

ABSTRACT

Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[3,2-b]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4) by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[3,2-b]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[3,2-b]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What is more, the ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-b]pyrrole-based SMAs in realizing low energy loss and high PCE.

11.
ACS Appl Bio Mater ; 5(6): 2549-2555, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35658412

ABSTRACT

The development of photosensitizers with low oxygen dependence for generating type I ROS is in high demand to be able to treat pathogenic infections in hypoxic conditions. Here, we report a series of cationic bipolar hemicyanines (C3, C6, and C10) with alkyl linkers of varying lengths that are found to exclusively produce hydroxyl radicals and superoxide radicals with the aid of white light and that have different antibacterial abilities toward a variety of pathogens. Furthermore, hemicyanines could differentiate live from dead bacteria to track the status of pathogens in real time. It is expected that hemicyanines could be applied for combatting various microbial infections in hypoxia and real-time tracking.


Subject(s)
Light , Photosensitizing Agents , Carbocyanines , Photosensitizing Agents/pharmacology , Sterilization
12.
Angew Chem Int Ed Engl ; 61(30): e202202227, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35536020

ABSTRACT

Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.

13.
Angew Chem Int Ed Engl ; 61(28): e202203844, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35441761

ABSTRACT

Purely organic emitters have shown great potential but still suffer from low efficiency in near-infrared organic light-emitting diodes (NIR-OLEDs) due to the intensive non-radiative recombination. In this contribution, two pairs of thermally activated delayed fluorescence (TADF) enantiomers (R/S-DOBP and R/S-HDOBP) with tetracoordinate boron geometries were designed and synthesized. The TADF emitters simultaneously showed aggregation-induced emission, circularly polarized luminescence, high-contrast mechanochromism, and piezochromism behaviors. More importantly, R/S-DOBP and R/S-HDOBP revealed high photoluminescence quantum yields and efficient reverse intersystem crossing in neat films. The nondoped solution-processed OLEDs based on these unique emitters revealed the NIR emission (peaking at 716 nm) with a maximum external quantum efficiency of 1.9 % and high exciton utilization efficiency of 86 %, which represent one of the best solution-processed nondoped NIR-OLEDs.

14.
Sci Total Environ ; 831: 154826, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35341866

ABSTRACT

Water composite pollution is still a great challenge in the field of water treatment. Especially for microplastic (MP), as an emerging pollutant, its wide distribution in water and persistent eco-environmental influence have received great concerns in recent years. Nevertheless, the removal characteristics and mechanism of conventional coagulation on MP composite pollution is quite insufficient. In this study, the coagulation removal performance and mechanisms of MP (polyethylene, PE) and norfloxacin (NOR) was investigated by polyaluminium chloride (PAC) and anionic polyacrylamide (APAM). Compared with single system, the removal efficiency of PE was significantly improved (>99.0%) under plateau stage in composite system, while the removal efficiency of NOR was slightly decreased to around 42% regardless of the addition of APAM. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential and One-way analysis of variance (ANOVA) of experimental data were used to explore the coagulation mechanisms. The results demonstrated that the removal of individual PE and NOR was mainly controlled by charge neutralization and sweep flocculation by PAC and APAM, and adsorption by formation of Al-NOR complex, respectively. Importantly, in composite system, the removal of PE was enhanced not only by the stronger charge neutralization but also the adsorption via the formation of PE-NOR-Al complex. Furthermore, the removal efficiency of PE and NOR in neutral and weak alkaline conditions was higher than that in weak acidic or strong alkaline conditions. The presence of metal ions and humic acid had obvious inhibition and promoting effects on the removal efficiency of PE and NOR. This study can provide a new perspective on fundamental understanding in characteristics and mechanisms of MP composite pollutants removed by coagulation.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Flocculation , Microplastics , Norfloxacin , Plastics , Water Pollutants, Chemical/analysis , Water Purification/methods
15.
Chinese Journal of Cardiology ; (12): 361-368, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935155

ABSTRACT

Objective: To investigate the representability and etiological diagnostic value of myocardium samples obtained from patients with hypertrophic cardiomyopathy (HCM) by transthoracic echocardiography-guided percutaneous intramyocardial septal biopsy (myocardial biopsy of Liwen procedure). Methods: This study was a retrospective case-series analysis. Patients with HCM, who underwent myocardial biopsy of Liwen procedure and radiofrequency ablation in Xijing Hospital, Air Force Military Medical University from July to December 2019, were included. Demographic data (age, sex), echocardiographic data and complications were collected through electronic medical record system. The histological and echocardiographic features, pathological characteristics of the biopsied myocardium of the patients were analyzed. Results: A total of 21 patients (aged (51.2±14.5) years and 13 males (61.9%)) were enrolled. The thickness of ventricular septum was (23.3±4.5)mm and the left ventricular outflow tract gradient was (78.8±42.6)mmHg (1 mmHg=0.133 kPa). Eight patients (38.1%) were complicated with hypertension, 1 patient (4.8%) had diabetes, and 2 patients (9.5%) had atrial fibrillation. Hematoxylin-eosin staining of myocardial samples of HCM patients before radiofrequency ablation evidenced myocytes hypertrophy, myocytes disarray, nuclear hyperchromatism, hypertrophy, atypia, coronary microvessel abnormalities, adipocyte infiltration, inflammatory cell infiltration, cytoplasmic vacuoles, lipofuscin deposition. Interstitial fibrosis and replacement fibrosis were detected in Masson stained biopsy samples. Hematoxylin-eosin staining of myocardial samples of HCM patients after radiofrequency ablation showed significantly reduced myocytes, cracked nuclear in myocytes, coagulative necrosis, border disappearance and nuclear fragmentation. Quantitative analysis of myocardial specimens of HCM patients before radiofrequency ablation showed that there were 9 cases (42.9%) with mild myocardial hypertrophy and 12 cases (57.1%) with severe myocardial hypertrophy. Mild, moderate and severe fibrosis were 5 (23.8%), 9 (42.9%) and 7 (33.3%), respectively. Six cases (28.6%) had myocytes disarray. There were 11 cases (52.4%) of coronary microvessel abnormalities, 4 cases (19.0%) of adipocyte infiltration, 2 cases (9.5%) of inflammatory cell infiltration,6 cases (28.5%) of cytoplasmic vacuole, 16 cases (76.2%) of lipofuscin deposition. The diameter of cardiac myocytes was (25.2±2.8)μm, and the percentage of collagen fiber area was 5.2%(3.0%, 14.6%). One patient had severe replacement fibrosis in the myocardium, with a fibrotic area of 67.0%. The rest of the patients had interstitial fibrosis. The myocardial specimens of 13 patients were examined by transmission electron microscopy. All showed increased myofibrils, and 9 cases had disorder of myofibrils. All patients had irregular shape of myocardial nucleus, partial depression, mild mitochondrial swelling, fracture and reduction of mitochondrial crest, and local aggregation of myofibrillary interfascicles. One patient had hypertrophy of cardiomyocytes, but the arrangement of muscle fibers was roughly normal. There were vacuoles in the cytoplasm, and Periodic acid-Schiff staining was positive. Transmission electron microscopy showed large range of glycogen deposition in the cytoplasm, with occasional double membrane surround, which was highly indicative of glycogen storage disease. No deposition of glycolipid substance in lysozyme was observed under transmission electron microscope in all myocardial specimens, which could basically eliminate Fabry disease. No apple green substance was found under polarized light after Congo red staining, which could basically exclude cardiac amyloidosis. Conclusion: Myocardium biopsied samples obtained by Liwen procedure of HCM patients are representative and helpful for the etiological diagnosis of HCM.


Subject(s)
Humans , Male , Biopsy/adverse effects , Cardiomegaly/pathology , Cardiomyopathy, Hypertrophic/diagnosis , Eosine Yellowish-(YS) , Fibrosis , Heart Defects, Congenital , Hematoxylin , Lipofuscin , Myocardium/pathology , Retrospective Studies
16.
Mater Horiz ; 8(2): 547-555, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-34821270

ABSTRACT

By integrating high molecular rigidity and stable chirality, two pairs of D*-A type circularly polarized thermally activated delayed fluorescence (CP-TADF) emitters with an almost absolute quasi-equatorial conformer geometry and excellent photoluminescence quantum efficiencies (PLQYs) are developed, achieving state-of-the-art electroluminescence performance among blue and orange circularly polarized organic light-emitting diodes (CP-OLEDs).

17.
Mater Horiz ; 8(2): 606-611, 2021 02 01.
Article in English | MEDLINE | ID: mdl-34821277

ABSTRACT

Triplet-triplet annihilation upconversion (TTA-UC) has been widely studied, but a color-tunable TTA-UC system triggered by chemical stimuli has not yet been proposed. Herein, reversible acid/base switching of the TTA-UC emission wavelength is achieved for the first time by a simple platform, composed of a direct singlet-triplet (S0-T1) absorption photosensitizer, and proton-responsive 9,10-di(pyridin-4-yl)anthracene (DPyA) as an acceptor. The photosensitizer-acceptor pair exhibits efficient UC emission (quantum yield up to 3.3%, and anti-Stokes shift up to 0.92 eV) with remarkable contrast upon base/acid treatment (Δλem,max = 82 nm, 0.46 eV). In a proof-of-concept study, the color-adjustable TTA-UC emission was applied as a remote modulator to photo-control reversible chemical reactions for the first time. This platform enriches the portfolio of color-switchable TTA-UC, and the mechanism would inspire further development of smart UC systems and extend the application field of upconversion.


Subject(s)
Photosensitizing Agents , Isomerism
18.
Environ Pollut ; 284: 117537, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34261229

ABSTRACT

Microplastics (MPs) as carriers of various contaminants have attracted more attentions in water environments. However, the interactions between typical MPs and norfloxacin (NOR) in natural water environments were still not systematically studied. In this study, the adsorption of NOR onto four typical types of MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) was investigated in simulated natural water and real surface water, and the adsorption mechanisms were deeply explored to provide fundamental understandings of the MPs-NOR complicated pollution. The results showed that the kinetics of NOR onto all MPs obeyed pseudo-second-order model, and was greatly slowed down at lower temperature or higher salinity. The intrinsic structure and surface area of MPs played important roles in the adsorption behaviors of NOR on these four types of MPs. The adsorption isotherm of NOR onto all MPs could be well described by linear model, with the Kd values following the order of PVC > PS > PE > PP (i.e. 6.229-11.901 L/µg) in simulated natural water. However, in surface water the adsorption isotherms of NOR on all MPs could be well fitted by Freundlich model. For all MPs, the adsorption of NOR was quite pH-dependent due to the electrostatic interactions. Furthermore, the salinity and the presence of dissolved organic matter (DOM) had significantly hindered the NOR adsorption. More importantly, compared with adsorption behaviors in simulated natural water, the competition of coexisting substances such as cations and NOM for adsorption sites and higher water pH dramatically reduced the adsorption of NOR onto all types of MPs in Jiang'an River, with the reduction rate of 19.7-41.2%. Finally, the mechanism studies indicated that the electrostatic attractions played a key role in the adsorption of NOR onto MPs, and π-π, H-bonding, polar-polar, and Van Der Waals interactions were also involved in adsorption processes.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Kinetics , Norfloxacin , Plastics , Water , Water Pollutants, Chemical/analysis
19.
RSC Adv ; 11(15): 8491-8504, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423351

ABSTRACT

In situ generation is a powerful technique used to prepare homogenous adsorptive mixed matrix membranes (MMMs) containing functional nanoparticles, although the mechanism of formation of the membranes is not yet clear and there have been few published evaluations of membrane fouling. We therefore used this method to prepare a novel homogeneous adsorptive Zr-based nanoparticle-polyethersulfone (PES) MMM and systematically studied the mechanism of membrane formation at the atomic level. As the amount of ZrOCl2·8H2O in the casting solution increased, the phase inversion kinetics changed from instantaneous demixing due to the thermodynamic enhancement effect to a delayed demixing process caused by viscosity hindrance. The in situ generation of nanoparticles in these MMMs can be divided into three stages: the migration stage, the exfoliation stage and the stable stage. Our findings provide a fundamental understanding of the interface chemistry in the development of in situ generated MMMs. M2 showed a higher adsorption of As(v) than the pure PES membrane and could be reused after regeneration. The removal of As(v) from the M2 filtration system mainly took place via adsorption rather than size exclusion, as confirmed by EDS and experimental data. The presence of humic acid slightly inhibited the removal of As(v) during the filtration process as a result of the barrier effect caused by the formation of a filter cake via humic acid fouling. The filtration of a bovine serum albumin solution showed that the MMM with in situ generated nanoparticles had better antifouling properties than the PES membrane alone in multiple applications as a result of the enhanced hydrophilic surface.

20.
Sichuan Mental Health ; (6): 193-196, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-987515

ABSTRACT

Ketamine has gained increasing attention as a novel antidepressant. This article reviews the clinical studies on the antidepressant and anti-suicidal properties of ketamine and its enantiomers (R-ketamine, S-ketamine).

SELECTION OF CITATIONS
SEARCH DETAIL
...