Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 11(21): e2200782, 2022 11.
Article in English | MEDLINE | ID: mdl-36101484

ABSTRACT

Impaired diabetic wound healing is associated with the persistence of chronic inflammation and excessive oxidative stress, which has become one of the most serious clinical challenges. Wound dressings with anti-inflammatory and reactive oxygen species (ROS)-scavenging properties are desirable for diabetic wound treatment. In this study, a shape-adaptable, biodegradable, biocompatible, antioxidant, and immunomodulatory interleukin-33 (IL-33)-cytogel is developed by encapsulating IL-33 into physically cross-linked DNA hydrogels and used as wound dressings to promote diabetic wound healing. The porous microstructures and biodegradable properties of the IL-33-cytogel ensure the local sustained-release of IL-33 in the wound area, where the sustained-release of IL-33 is maintained for at least 7 days. IL-33-cytogel can induce local accumulation of group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs), as well as M1-to-M2 transition at the wound sites. Additionally, the antioxidant and biocompatible characteristics of DNA hydrogels promote the scavenging of intracellular ROS without affecting cell viability. As a result, local inflammation in the diabetic wound area is resolved upon IL-33-cytogel treatment, which is accompanied by improved granulation tissue regeneration and accelerated wound closure. This study demonstrates a promising strategy in tissue engineering and regenerative medicine by incorporating DNA hydrogels and cytokine immunotherapy for promoting diabetic wound healing.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Hydrogels/chemistry , Antioxidants , Interleukin-33 , Immunity, Innate , Delayed-Action Preparations , Reactive Oxygen Species , Cytokines , Lymphocytes , Wound Healing , Inflammation , DNA
3.
ACS Appl Mater Interfaces ; 14(22): 25173-25182, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35638566

ABSTRACT

The development of a biodegradable and shape-adaptable bioscaffold that can enhance local cytokine retention and bioactivity is essential for the application of immunotherapy in periodontal diseases. Here, we report a biodegradable, anti-inflammatory, and osteogenic ILGel that uses a physically cross-linked DNA hydrogel as a soft bioscaffold for the long-term sustained release of cytokine interleukin-10 (IL-10) to accelerate diabetic alveolar bone rebuilding. Porous microstructures of ILGel favored the encapsulation of IL-10 and maintained IL-10 bioactivity for at least 7 days. ILGel can be gradually degraded or hydrolyzed under physiological conditions, avoiding the potential undesired side effects on dental tissues. Long-term sustained release of bioactive IL-10 from ILGel not only promoted M2 macrophage polarization and attenuated periodontal inflammation but also triggered osteogenesis of mesenchymal stem cells (MSCs), leading to accelerated alveolar bone formation and healing of alveolar bone defects under diabetic conditions in vivo. ILGel treatment significantly accelerated the defect healing rate of diabetic alveolar injury up to 93.42 ± 4.6% on day 21 post treatment compared to that of free IL-10 treatment (63.30 ± 7.39%), with improved trabecular architectures. Our findings imply the potential application of the DNA hydrogel as the bioscaffold for cytokine-based immunotherapy in diabetic alveolar bone injury and other periodontal diseases.


Subject(s)
Diabetes Mellitus , Periodontal Diseases , Bone Regeneration , Cytokines , DNA , Delayed-Action Preparations , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Interleukin-10 , Osteogenesis/genetics
4.
Phytomedicine ; 102: 154163, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35597027

ABSTRACT

BACKGROUND: Artemisia anomala S. Moore (Compositae), known as "Nan-Liu-Ji-Nu" in traditional Chinese medicine (TCM), has been used to treat many inflammatory diseases, including enteritis, acute icteric hepatitis, rheumatism, toothache, tonsillitis, and chronic bronchitis, for centuries. Our preliminary studies have demonstrated that the ethanolic extract of A. anomala (EAA) might be with the potential of inhibiting the activation of the NLRP3 inflammasome. However, the anti-inflammatory activity of EAA based on NLRP3 inflammasome inhibition is still unclear. PURPOSE: This work aimed to elucidate the anti-inflammatory mechanism of EAA by inhibiting NLRP3 inflammasome activation. METHODS: Lipopolysaccharide (LPS)-primed bone marrow-derived macrophages (BMDMs) were used to evaluate the inhibitory effects on NLRP3 inflammasome activation. The level of IL-1ß was determined by ELISA. The expression levels of IL-1ß, caspase-1, NLRP3, and ASC were assayed using western blot analysis. ASC oligomerization and speck formation were detected by immunofluorescence microscopy. The measurements of intracellular chloride and potassium were conducted using N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) probe assay and inductively coupled plasma-optical emission spectrometry (ICP-OES), respectively. Mitochondrial reactive oxygen species (mtROS) were examined using the MitoSOX method. Acridine orange (AO) staining was used to detect the permeability of the lysosomal membrane. A DSS-induced ulcerative colitis model was established to evaluate the anti-inflammatory effects of EAA in vivo. Finally, high-performance liquid chromatography (HPLC) was employed to identify and quantify the major constituents of EAA. RESULTS: In BMDMs, EAA significantly inhibited the release of IL-1ß induced by LPS. The mechanistic study revealed that EAA inhibited NLRP3 inflammasome activation by blocking the oligomerization of ASC and suppressed the LPS-induced priming step. Furthermore, EAA protected lysosomes by inhibiting the TAK1-JNK pathway, thereby inhibiting the assembly of downstream NLRP3 inflammasome and the production of IL-1ß. In addition, EAA exerted potent protective effects in an ulcerative colitis model by decreasing the content of colonic IL-1ß and alleviating the process of ulcerative colitis. HPLC analysis identified eight main components of EAA, including isofraxidin (1), quercetin-7-O-ß-D-glucopyranoside (2), apigenin-7-O-ß-D-glucopyranoside (3), 7-methoxycoumarin (4), quercetin (5), luteolin (6), kaempferol (7), and eupatorin (8), Of these compounds, quercetin and kaempferol were found to be the most potent ingredients. CONCLUSION: These findings collectively reveal that EAA exerts anti-inflammatory effects by both suppressing the NLRP3 priming step and protecting lysosomes to inhibit NLRP3 inflammasome activation, suggesting that this traditional herbal medicine might be used to treat NLRP3-driven inflammatory diseases.


Subject(s)
Artemisia , Colitis, Ulcerative , Anti-Inflammatory Agents/pharmacology , Caspase 1/metabolism , Inflammasomes , Interleukin-1beta/metabolism , Kaempferols , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Quercetin
5.
ACS Med Chem Lett ; 13(4): 560-569, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35450356

ABSTRACT

The NLRP3 inflammasome has now emerged as one of the most appealing drug targets for many inflammation-related diseases. Velutone F, a natural NLPR3 inhibitor, identified in our previous study has been limited in application by its low in planta abundance, weak activity, and complicated synthetic routes. To address these needs, structural optimization of velutone F led to a series of novel NLRP3 inhibitors. Among them, compound 14c exerted remarkable inhibitory activity with an IC50 value in the nanomolar range (251.1 nM) and was approximately 5-fold more potent than velutone F. Moreover, the synthesis method of 14c was simple, easy to handle, and scalable. Compound 14c could suppress NLRP3 inflammasome activation by attenuating ASC speck formation. Most importantly, compound 14c reduced peritoneal neutrophil influx in mice and IL-1ß in the spleen in the MSU-induced peritonitis in LPS-primed mouse model. Taken together, compound 14c is a prospective lead compound in the discovery of NLRP3 inflammasome inhibitors.

6.
J Med Chem ; 64(12): 8127-8141, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34081857

ABSTRACT

Klisyri (KX01) is a dual tubulin/Src protein inhibitor that has shown potential therapeutic effects in several tumor models. However, a phase II clinical trial in patients with bone-metastatic castration-resistant prostate cancer was halted because of lack of efficacy. We previously reported that KX01 binds to the colchicine site of ß-tubulin and its morpholine group lies close to α-tubulin's surface. Thus, we hypothesized that enhancing the interaction of KX01 with α-tubulin could increase tubulin inhibition and synthesized a series of KX01 derivatives directed by docking studies. Among these derivatives, 8a exhibited more than 10-fold antiproliferation activity in several tumor cells than KX01 and significantly improved in vivo antitumor effects. The X-ray crystal structure suggested that 8a both bound to the colchicine site and extended into the interior of α-tubulin to form potent interactions, presenting a novel binding mode. A potential clinical candidate for cancer therapy was identified in this study.


Subject(s)
Acetamides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Tubulin Modulators/pharmacology , src-Family Kinases/antagonists & inhibitors , Acetamides/chemical synthesis , Acetamides/metabolism , Acetamides/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cattle , Cell Line, Tumor , Chickens , Crystallography, X-Ray , Drug Design , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Morpholines , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism , Tubulin Modulators/pharmacokinetics
7.
Chem Biol Drug Des ; 97(2): 358-371, 2021 02.
Article in English | MEDLINE | ID: mdl-32889741

ABSTRACT

A novel series of Aloe-emodin derivatives containing N-heterocyclic moieties was designed and synthesized. The structure-activity relationship studies (SARs) indicated that the replacement of hydroxyethyl and benzhydryl piperazine groups could improve efficacy. Compounds 12r and 14a-14c exhibited a higher inhibitory effect on LPS-induced nitric oxide (NO) production in RAW264.7 macrophages than Aloe-emodin did. Among them, 12r showed the most potent inhibition with an IC50 value of 5.66 ± 0.47 µM. Further toxicity and pharmacokinetic studies were carried out and 12r was found to be the most active structure with low toxicity risk and good metabolic properties. It could also decrease the levels of IL-1ß, TNF-α, PGE2 and inhibit the activation of nuclear factor-κB signalling pathway. Importantly, 12r showed oral bioavailability of up to 55.16% and attenuated the inflammatory symptoms in an ulcerative colitis mouse model in vivo. These results indicate that 12r is suitable for development as an anti-inflammatory agent.


Subject(s)
Anthraquinones/chemistry , Anti-Inflammatory Agents/chemical synthesis , Drug Design , Animals , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dinoprostone/metabolism , Disease Models, Animal , Half-Life , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
8.
Fitoterapia ; 147: 104769, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152462

ABSTRACT

Six new biphenyl-type neolignans (1-6), and eighteen known compounds (7-24) were isolated from the EtOH extract of Magnolia officinalis. Their structures were determined by 1D and 2D NMR, and by HRMS. The anti-tumor activities of the isolated compounds were evaluated on HepG2, HCT-116, H1975 and HUVEC cell lines. Among the isolated compounds, nine compounds (3, 5, 7, 8, 12, 14, 20, 22, and 24) showed moderate cytotoxicities, and compound 23 showed the best cytotoxicity with IC50 value lower than 10 µM.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Lignans/pharmacology , Magnolia/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biphenyl Compounds , China , HCT116 Cells , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Lignans/isolation & purification , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Bark/chemistry
9.
J Nat Prod ; 83(10): 2950-2959, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32989985

ABSTRACT

Eight new flavonoids, including two ß-hydroxy/methoxychalcones, velutones A and B (1 and 2), two 1,3-diarylpropan-1-ols, velutols C and D (3 and 4), a dihydroxychalcone, velutone E (5), a chalcone, velutone F (6), a furanoflavanone, velutone G (7), and a furanoflavonol, velutone H (8), and 14 known compounds were isolated from Millettia velutina. Their structures were determined by high-resolution electrospray ionisation mass spectrometry (HR-ESIMS) and spectroscopic data analyses and time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD) calculations. Among the isolated constituents, compound 6 exhibited the most potent inhibitory effect (IC50: 1.3 µM) against nigericin-induced IL-1ß release in THP-1 cells. The initial mechanism of action study revealed that compound 6 suppressed NLRP3 inflammasome activation via blocking ASC oligomerization without affecting the priming step, which subsequently inhibited caspase-1 activation and IL-1ß secretion. Most importantly, compound 6 exerted potent protective effects in the LPS-induced septic shock mice model by improving the survival rate of mice and suppressing serum IL-1ß release. These results demonstrated that compound 6 had the potential to be developed as a broad-spectrum NLRP3 inflammasome inhibitor for the treatment of NLRP3-related disease.


Subject(s)
Flavonoids/pharmacology , Millettia , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Caspase 1 , Humans , Inflammasomes , Inflammation , Lipopolysaccharides , Macrophages , Mice , Molecular Structure , THP-1 Cells
10.
Lipids Health Dis ; 16(1): 239, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29228954

ABSTRACT

BACKGROUND: Hyperlipidemia characterized of elevated serum lipid levels is a prevalent disease frequently resulting in cardiovascular disease (CVD). Berberine and evodiamine are herbal products of traditional Chinese herb Coptis chinensis and Evodia rutaecarpa, which are indicated to exert regulation of lipid metabolism. Therefore, the objective of this study was to investigate the lipid-lowering effect of berberine and evodiamine combination in hyperlipidemic rats. METHOD: The rat model of hyperlipidemia was established by providing high-fat-diet (HFD) for 4 weeks. Berberine (BB), evodiamine (EV), and their combination (BB + EV) were orally administered to HFD induced rats for 4 weeks. Body weight, food utilization, histopathology of liver tissues, lipid profiles of serum and liver were measured. Gas chromatography (GC) analysis was applied to examine the level of plasma total cholesterol and ß- Sitosterol (BS) to estimate cholesterol absorption activity. Furthermore, intestinal NPC1L1, ACAT2, and ApoB48 protein expressions were evaluated by immunohistochemical assay. RESULT: According to the results, decreased levels of serum cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), as well as hepatic TC were showed in hyperlipidemic rats treated by combination of berberine and evodiamine. GC analysis indicated that the elevated plasma BS was significantly ameliorated by BB, EV, and BB + EV. In addition, immunohistochemical analysis revealed that BB + EV treatment down-regulated the expressions of intestinal NPC1L1 and ACAT2, and ApoB48 in HFD induced rats. CONCLUSION: Based on the above results, combination of berberine and evodiamine exerted a promising preventive effect on hyperlipidemia, partially through inhibiting intestinal absorption of cholesterol.


Subject(s)
Berberine/pharmacology , Hyperlipidemias/drug therapy , Hypolipidemic Agents/pharmacology , Intestinal Absorption/drug effects , Lipid Metabolism/drug effects , Quinazolines/pharmacology , Administration, Oral , Animals , Apolipoprotein B-48/genetics , Apolipoprotein B-48/metabolism , Body Weight/drug effects , Cholesterol, LDL/metabolism , Coptis/chemistry , Diet, High-Fat , Drug Combinations , Evodia/chemistry , Gene Expression Regulation/drug effects , Hyperlipidemias/etiology , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Liver/drug effects , Liver/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Rats , Rats, Sprague-Dawley , Sitosterols/metabolism , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Triglycerides/metabolism , Sterol O-Acyltransferase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...