Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Am Chem Soc ; 146(6): 3627-3634, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38306714

ABSTRACT

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Subject(s)
Dendrimers , Nanoparticles , Isomerism , Dendrimers/chemistry , RNA, Messenger/genetics , Luciferases
2.
J Am Chem Soc ; 145(34): 18760-18766, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37606244

ABSTRACT

Delivery of nucleic acids with viral and synthetic vectors has pioneered genetic nanomedicine. Four-component lipid nanoparticles (LNPs) consisting of ionizable lipids, phospholipids, cholesterol, and PEG-conjugated lipids, assembled by microfluidic or T-tube, are the benchmark synthetic vector for delivery of mRNA. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery systems for mRNA were developed by us to complement LNPs. IAJDs consist of multifunctional hydrophilic low-generation dendrons or minidendrons conjugated to hydrophobic dendrons. They were inspired by amphiphilic Janus dendrimers and glycodendrimers. IAJDs coassemble with mRNA into predictable-size vesicles, named dendrimersome nanoparticles (DNPs), by simple injection in acetate buffer, rather than by the complex technology required by LNPs. Assembly of DNPs by simple injection together with sequence design in the hydrophilic and hydrophobic modules of IAJDs endowed rapid screening to access discovery. Molecular design principles for targeted delivery were elaborated when the branching points of IAJDs were constructed from symmetrically and nonsymmetrically substituted plant phenolic acids interconnected by pentaerythritol (PE). Here, we report the first library containing simplified IAJDs constructed in only three steps from symmetrically trialkylated PE in the hydrophobic domain and four different piperazine-based ionizable amines in the hydrophilic part. Rapid coassembly with mRNA and in vivo screening led to the discovery of the two most active IAJDs targeting the spleen, liver, and lymph nodes, one predominantly to the spleen and liver and six delivering equally to the spleen, liver, lung, and lymph nodes. These IAJDs represent the simplest synthetic vectors and the first viral or synthetic system delivering equally to multiple organs.


Subject(s)
Dendrimers , RNA, Messenger/genetics , Liver , Lipids
3.
Science ; 381(6656): 436-443, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37499029

ABSTRACT

Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-kit , RNA, Messenger , Gene Editing/methods , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-kit/genetics , RNA, Messenger/genetics , Animals , Humans , Mice
4.
Pharmaceutics ; 15(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37376020

ABSTRACT

Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

5.
Mol Genet Metab ; 137(4): 320-327, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36334423

ABSTRACT

Aicardi Goutières Syndrome (AGS) is an autoinflammatory disorder resulting in sustained interferon activation through defects in nucleic acid modification and sensing pathways. Thus, mRNA-based vaccination used against SARS-CoV-2, raise disease-specific safety concerns. To assess interferon signaling, we tested mRNA SARS-CoV-2 vaccines in AGS whole blood samples. Interferon activation is measured through quantitation of interferon signaling gene (ISG) expression and is increased in AGS patients. There was no increase in ISG scores from baseline following treatment with the nucleoside modified mRNA formulation compared to an increase with unmodified. A patient-family survey reported that the vaccines were well tolerated. These findings suggest that COVID vaccination using nucleoside-modified forms of mRNA vaccines are unlikely to directly stimulate ISG expression in response to mRNA internalization in AGS tissues. With continued community spread, we recommend vaccination using nucleoside-modified mRNA vaccines in this rare disease group in individuals for whom vaccines were previously well tolerated.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , Nucleosides , COVID-19/prevention & control , RNA, Messenger/genetics , Interferons
6.
J Am Chem Soc ; 144(11): 4746-4753, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35263098

ABSTRACT

Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.


Subject(s)
COVID-19 , Dendrimers , Nanoparticles , COVID-19 Vaccines , Dendrimers/chemistry , Humans , Liposomes , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics
7.
J Am Chem Soc ; 143(43): 17975-17982, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34672554

ABSTRACT

Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.


Subject(s)
Dendrimers/chemistry , RNA, Messenger/chemistry , Amines/chemistry , Animals , Esters/chemistry , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Mice , Nanoparticles/chemistry , RNA, Messenger/immunology , RNA, Messenger/metabolism , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism
8.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34324336

ABSTRACT

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/metabolism , Surface-Active Agents/chemistry , Animals , Dendrimers/chemical synthesis , Drug Carriers/chemical synthesis , Drug Liberation , Female , HEK293 Cells , Humans , Male , Mice , Proof of Concept Study , Surface-Active Agents/chemical synthesis
9.
J Exp Med ; 215(6): 1571-1588, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29739835

ABSTRACT

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/cytology , Nucleosides/metabolism , RNA, Messenger/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Antigens/metabolism , Lipids/chemistry , Macaca mulatta , Nanoparticles/chemistry , Protein Subunits/metabolism , Time Factors , Vaccination
10.
Virology ; 514: 106-117, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29175625

ABSTRACT

HIV-1 envelope (Env)-based vaccines have so far largely failed to induce antibodies that prevent HIV-1 infection. One factor proposed to limit the immunogenicity of cell-associated Env is its low level of expression on the cell surface, restricting accessibility to antibodies. Using a vaccinia prime/protein boost protocol in mice, we explored the immunologic effects of mutations in the Env cytoplasmic tail (CT) that increased surface expression, including partial truncation and ablation of a tyrosine-dependent endocytosis motif. After vaccinia primes, CT-modified Envs induced up to 7-fold higher gp120-specific IgG, and after gp120 protein boosts, they elicited up to 16-fold greater Tier-1 HIV-1 neutralizing antibody titers, although results were variable between isolates. These data indicate that the immunogenicity of HIV-1 Env in a prime/boost vaccine can be enhanced in a strain-dependent manner by CT mutations that increase Env surface expression, thus highlighting the importance of the prime in this vaccine format.


Subject(s)
HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccinia virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Formation , Female , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , Humans , Immunization, Secondary , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL
11.
Nat Commun ; 8: 14630, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28251988

ABSTRACT

Monoclonal antibodies are one of the fastest growing classes of pharmaceutical products, however, their potential is limited by the high cost of development and manufacturing. Here we present a safe and cost-effective platform for in vivo expression of therapeutic antibodies using nucleoside-modified mRNA. To demonstrate feasibility and protective efficacy, nucleoside-modified mRNAs encoding the light and heavy chains of the broadly neutralizing anti-HIV-1 antibody VRC01 are generated and encapsulated into lipid nanoparticles. Systemic administration of 1.4 mg kg-1 of mRNA into mice results in ∼170 µg ml-1 VRC01 antibody concentrations in the plasma 24 h post injection. Weekly injections of 1 mg kg-1 of mRNA into immunodeficient mice maintain trough VRC01 levels above 40 µg ml-1. Most importantly, the translated antibody from a single injection of VRC01 mRNA protects humanized mice from intravenous HIV-1 challenge, demonstrating that nucleoside-modified mRNA represents a viable delivery platform for passive immunotherapy against HIV-1 with expansion to a variety of diseases.


Subject(s)
Antibodies, Neutralizing/genetics , HIV-1/drug effects , Nucleosides/chemistry , RNA, Messenger/administration & dosage , Animals , Antibodies, Monoclonal/genetics , Broadly Neutralizing Antibodies , Drug Administration Schedule , Female , HIV Antibodies/biosynthesis , HIV Infections/immunology , HIV Infections/therapy , HIV-1/immunology , Humans , Immunization, Passive , Lipids/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Messenger/pharmacology , RNA, Messenger/therapeutic use
12.
Clin Infect Dis ; 64(10): 1453-1456, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28203772

ABSTRACT

Correlates of death soon after antiretroviral therapy (ART) initiation remain unclear. We investigated the association between expression of CD39, a novel immune exhaustion marker, and early mortality in patients with human immunodeficiency virus/tuberculosis co-infection. Elevated pre-ART CD39+CD8+ T cell frequency was independently associated with mortality within 6 months of ART initiation.


Subject(s)
Antigens, CD/immunology , Apyrase/immunology , CD8-Positive T-Lymphocytes/immunology , Coinfection/mortality , HIV Infections/complications , Tuberculosis/complications , Adult , Aged , Anti-Retroviral Agents/adverse effects , Anti-Retroviral Agents/therapeutic use , Antigens, CD/genetics , Antiretroviral Therapy, Highly Active/adverse effects , Apyrase/genetics , Biomarkers , Botswana/epidemiology , CD4 Lymphocyte Count , Cohort Studies , Female , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Male , Middle Aged , Prospective Studies , Tuberculosis/blood , Tuberculosis/drug therapy , Tuberculosis/immunology , Young Adult
13.
PLoS One ; 10(3): e0120126, 2015.
Article in English | MEDLINE | ID: mdl-25793272

ABSTRACT

A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/prevention & control , Granulocyte Colony-Stimulating Factor/pharmacology , Solar Activity , Space Flight , Animals , Enrofloxacin , Female , Fluoroquinolones/pharmacology , Mice
14.
PLoS One ; 9(6): e100800, 2014.
Article in English | MEDLINE | ID: mdl-24959865

ABSTRACT

The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth's magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel.


Subject(s)
Radiation Injuries, Experimental/immunology , Skin/radiation effects , T-Lymphocytes, Regulatory/radiation effects , Animals , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation/radiation effects , Female , Male , Mice, Inbred ICR , Radiation, Ionizing , Swine
15.
PLoS One ; 9(1): e85665, 2014.
Article in English | MEDLINE | ID: mdl-24454913

ABSTRACT

A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.


Subject(s)
Klebsiella Infections/immunology , Pseudomonas Infections/immunology , Radiation Injuries, Experimental/immunology , Respiratory Tract Infections/immunology , Stress, Psychological/immunology , Animals , Bacteremia/blood , Bacteremia/immunology , Corticosterone/blood , Female , Hindlimb Suspension , Humans , Immunity, Innate/radiation effects , Klebsiella Infections/blood , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred ICR , Peritonitis/blood , Peritonitis/immunology , Pseudomonas Infections/blood , Radiation Injuries, Experimental/blood , Respiratory Tract Infections/blood , Solar Activity , Space Flight , Stress, Psychological/blood
16.
PLoS One ; 7(9): e44329, 2012.
Article in English | MEDLINE | ID: mdl-23028522

ABSTRACT

The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth's magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.


Subject(s)
Bacterial Translocation/physiology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Hindlimb Suspension , Solar Activity , Animals , Female , Mice , Mice, Inbred ICR
17.
Radiat Res ; 175(4): 485-92, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21294608

ABSTRACT

Space flight conditions within the protection of Earth's gravitational field have been shown to alter immune responses, which could lead to potentially detrimental pathology. An additional risk of extended space travel outside the Earth's gravitational field is the effect of solar particle event (SPE) radiation exposure on the immune system. Organisms that could lead to infection include endogenous, latent viruses, colonizing pathogenics, and commensals, as well as exogenous microbes present in the spacecraft or other astronauts. In this report, the effect of SPE-like radiation on containment of commensal bacteria and the innate immune response induced by its breakdown was investigated at the radiation energies, doses and dose rates expected during an extravehicular excursion outside the Earth's gravitational field. A transient increase in serum lipopolysaccharide was observed 1 day after irradiation and was accompanied by an increase in acute-phase reactants and circulating proinflammatory cytokines, indicating immune activation. Baseline levels were reestablished by 5 days postirradiation. These findings suggest that astronauts exposed to SPE radiation could have impaired containment of colonizing bacteria and associated immune activation.


Subject(s)
Bacterial Load/radiation effects , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/radiation effects , Immunity, Innate/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Male , Mice , Mice, Inbred ICR , Radiation Dosage
18.
J Virol ; 83(17): 8596-603, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19553331

ABSTRACT

The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


Subject(s)
Epithelial Cells/virology , Gene Products, env/metabolism , HIV-1/physiology , Receptors, Cell Surface/physiology , Virus Internalization , Calcium-Binding Proteins , Cell Line , Cells, Cultured , DNA-Binding Proteins , Female , Humans , Protein Binding , Tumor Suppressor Proteins
19.
J Immunol ; 181(3): 2065-70, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18641344

ABSTRACT

The scavenger receptor cysteine-rich protein gp340 functions as part of the host innate immune defense system at mucosal surfaces. In the genital tract, its expression by cervical and vaginal epithelial cells promotes HIV trans-infection and may play a role in sexual transmission. Gp340 is an alternatively spliced product of the deleted in malignant brain tumors 1 (DMBT1) gene. In addition to its innate immune system activity, DMBT1 demonstrates instability in multiple types of cancer and plays a role in epithelial cell differentiation. We demonstrate that monocyte-derived macrophages express gp340 and that HIV-1 infection is decreased when envelope cannot bind it. Inhibition of infection occurred at the level of fusion of M-, T-, and dual-tropic envelopes. Additional HIV-1 envelope binding molecules, such as dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), mannose-binding lectin, and heparan sulfate, enhance the efficiency of infection of the cells that express them by increasing the local concentration of infectious virus. Our data suggest that gp340, which is expressed by macrophages in vivo, may function to enhance infection in much the same manner. Its expression on tissue macrophages and epithelial cells suggests important new opportunities for HIV-1 pathogenesis investigation and therapy.


Subject(s)
HIV Infections/immunology , Macrophages/immunology , Receptors, Cell Surface/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies/immunology , Calcium-Binding Proteins , Cell Line , DNA-Binding Proteins , Humans , Protein Binding , Tumor Suppressor Proteins
20.
J Immunol ; 180(8): 5593-600, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18390744

ABSTRACT

We previously demonstrated that HIV envelope glycoprotein (Env), delivered in the form of a vaccine and expressed by dendritic cells or 293T cells, could suppress Ag-stimulated CD4(+) T cell proliferation. The mechanism remains to be identified but is dependent on CD4 and independent of coreceptor binding. Recently, CD4(+) regulatory T (Treg) cells were found to inhibit protective anti-HIV CD4(+) and CD8(+) T cell responses. However, the role of Tregs in HIV remains highly controversial. HIV Env is a potent immune inhibitory molecule that interacts with host CD4(+) cells, including Treg cells. Using an in vitro model, we investigated whether Treg cells are involved in Env-induced suppression of CD4(+) T cell proliferation, and whether Env directly affects the functional activity of Treg cells. Our data shows that exposure of human CD4(+) T cells to Env neither induced a higher frequency nor a more activated phenotype of Treg cells. Depletion of CD25(+) Treg cells from PBMC did not overcome the Env-induced suppression of CD4(+) T cell proliferation, demonstrating that CD25(+)FoxP3(+) Treg cells are not involved in Env-induced suppression of CD4(+) T cell proliferation. In addition, we extend our observation that similar to Env expressed on cells, Env present on virions also suppresses CD4(+) T cell proliferation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Envelope Protein gp160/metabolism , HIV Infections/immunology , Lymphocyte Activation , T-Lymphocytes, Regulatory/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Line , Cell Proliferation , Cells, Cultured , HIV/immunology , HIV Envelope Protein gp160/immunology , HIV Infections/virology , Humans , Interleukin-10/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...