Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 251: 115267, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36933395

ABSTRACT

GPR40 is primarily expressed in pancreatic islet ß-cells, and its activation by endogenous ligands of medium to long-chain free fatty acids or synthetic agonists is clinically proved to improve glycemic control by stimulating glucose-dependent insulin secretion. However, most of the reported agonists are highly lipophilic, which might cause lipotoxicity and the off-target effects in CNS. Particularly, the withdrawal of TAK-875 from clinical trials phase III due to liver toxicity concern threw doubt over the long-term safety of targeting GPR40. Improving the efficacy and the selectivity, thus enlarging the therapeutic window would provide an alternative to develop safe GPR40-targeted therapeutics. Herein, by employing an innovative "three-in-one" pharmacophore drug design strategy, the optimal structural features for GPR40 agonist was integrated into one functional group of sulfoxide, which was incorporated into the ß-position of the propanoic acid core pharmacophore. As a result, the conformational constraint, polarity as well as chirality endowed by the sulfoxide significantly enhanced the efficacy, selectivity and ADMET properties of the novel (S)- 2-(phenylsulfinyl)acetic acid-based GPR40 agonists. The lead compounds (S)-4a and (S)-4s exhibited robust plasma glucose-lowering effects and insulinotropic action during an oral glucose tolerance test in C57/BL6 mice, excellent pharmacokinetic profile and little hepatobiliary transporter inhibition, marginal cell toxicities against human primary hepatocyte at 100 µM.


Subject(s)
Insulin , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Carboxylic Acids/pharmacology , Fatty Acids , Glucose , Glucose Tolerance Test , Hypoglycemic Agents/chemistry
2.
Chem Commun (Camb) ; 58(97): 13447-13450, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36350039

ABSTRACT

A concise synthesis of the tetrahydropyranyl side chain of verucopeptin, an antitumor antibiotic cyclodepsipeptide efficacious against MDR cancers in vivo, is achieved using 12 steps in the longest linear sequence and 21 total steps, in which Julia-Kocienski olefination for the segments coupling, asymmetric hydroxylation as well as stereoselective synthesis of stable tetrahydropyran ring from a D-isoascorbic acid derivative are key steps. This convergent synthetic strategy enables the structural modification and mechanism study of verucopeptin for its clinical applications.


Subject(s)
Drug Resistance, Multiple , Neoplasms , Humans , Drug Resistance, Neoplasm , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...