Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 129(16): 167201, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306770

ABSTRACT

The everlasting interest in spin chains is mostly rooted in the fact that they generally allow for comparisons between theory and experiment with remarkable accuracy, especially for exactly solvable models. A notable example is the spin-1/2 antiferromagnetic Heisenberg chain (AFHC), which can be well described by the Tomonaga-Luttinger liquid theory and exhibits fractionalized spinon excitations with distinct thermodynamic and spectroscopic experimental signatures consistent with theoretical predictions. A missing piece, however, is the lack of a comprehensive understanding of the spinon heat transport in AFHC systems, due to difficulties in its experimental evaluation against the backdrop of other heat carriers and complex scattering processes. Here we address this situation by performing ultralow-temperature thermal conductivity measurements on a nearly ideal spin-1/2 AFHC system copper benzoate Cu(C_{6}H_{5}COO)_{2}·3H_{2}O, whose field-dependent spin excitation gap enables a reliable extraction of the spinon thermal conductivity κ_{s} at zero field. κ_{s} was found to exhibit a linear temperature dependence κ_{s}∼T at low temperatures, with κ_{s}/T as large as 1.70 mW cm^{-1} K^{-2}, followed by a precipitate decline below ∼0.3 K. The observed κ_{s}∼T clarifies the discrepancies between various spin chain systems and serves as a benchmark for one-dimensional spinon heat transport in the low-temperature limit. The abrupt loss of κ_{s} with no corresponding anomaly in the specific heat is discussed in the context of many-body localization.

2.
Nat Commun ; 12(1): 307, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436565

ABSTRACT

Spin liquids are exotic states with no spontaneous symmetry breaking down to zero-temperature because of the highly entangled and fluctuating spins in frustrated systems. Exotic excitations like magnetic monopoles, visons, and photons may emerge from quantum spin ice states, a special kind of spin liquids in pyrochlore lattices. These materials usually are insulators, with an exception of the pyrochlore iridate Pr2Ir2O7, which was proposed as a metallic spin liquid located at a zero-field quantum critical point. Here we report the ultralow-temperature thermal conductivity measurements on Pr2Ir2O7. The Wiedemann-Franz law is verified at high fields and inferred at zero field, suggesting no breakdown of Landau quasiparticles at the quantum critical point, and the absence of mobile fermionic excitations. This result puts strong constraints on the description of the quantum criticality in Pr2Ir2O7. Unexpectedly, although the specific heats are anisotropic with respect to magnetic field directions, the thermal conductivities display the giant but isotropic response. This indicates that quadrupolar interactions and quantum fluctuations are important, which will help determine the true ground state of this material.

3.
Phys Rev Lett ; 127(26): 267202, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029499

ABSTRACT

One favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu_{3}(OH)_{6}Cl_{2}, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu_{3}(OH)_{6}Cl_{2} that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu_{3}(OH)_{6}Cl_{2}, we observed no contribution by any spin excitation nor obvious field-induced change to the thermal conductivity. These results impose strong constraints on various scenarios about the ground state of this kagome compound: while certain quantum paramagnetic states other than a QSL may serve as natural candidates, a QSL state, gapless or gapped, must be dramatically modified by the disorder so that the kagome spin excitations are localized.

5.
Phys Rev Lett ; 123(24): 247204, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922852

ABSTRACT

We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of triangular-lattice compound EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, which has long been considered as a gapless quantum spin liquid candidate. In specific heat measurements, a finite linear term is observed, consistent with the previous work [S. Yamashita et al., Nat. Commun. 2, 275 (2011)NCAOBW2041-172310.1038/ncomms1274]. However, we do not observe a finite residual linear term in the thermal conductivity measurements, and the thermal conductivity does not change in a magnetic field of 6 T. These results are in sharp contrast to previous thermal conductivity measurements on EtMe_{3}Sb[Pd(dmit)_{2}]_{2} [M. Yamashita et al., Science 328, 1246 (2010)SCIEAS0036-807510.1126/science.1188200], in which a huge residual linear term was observed and attributed to highly mobile gapless excitations, likely the spinons of a quantum spin liquid. In this context, the true ground state of EtMe_{3}Sb[Pd(dmit)_{2}]_{2} has to be reconsidered.

6.
Phys Rev Lett ; 120(6): 067202, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481222

ABSTRACT

Recently, there have been increasingly hot debates on whether there exists a quantum spin liquid in the Kitaev honeycomb magnet α-RuCl_{3} in a high magnetic field. To investigate this issue, we perform ultralow-temperature thermal conductivity measurements on single crystals of α-RuCl_{3} down to 80 mK and up to 9 T. Our experiments clearly show a field-induced phase transition occurring at µ_{0}H_{c}≈7.5 T, above which the magnetic order is completely suppressed. The minimum of thermal conductivity at 7.5 T is attributed to the strong scattering of phonons by magnetic fluctuations. Most importantly, above 7.5 T, we do not observe any significant contribution of thermal conductivity from gapless magnetic excitations, which puts a strong constraint on the nature of the high-field phase of α-RuCl_{3}.

SELECTION OF CITATIONS
SEARCH DETAIL
...