Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Virulence ; 15(1): 2352476, 2024 12.
Article in English | MEDLINE | ID: mdl-38741276

ABSTRACT

Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Glycation End Products, Advanced , Staphylococcus aureus , Virulence Factors , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Glycation End Products, Advanced/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics
2.
Antibiotics (Basel) ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35740143

ABSTRACT

Disinfectant resistance is evolving into a serious problem due to the long-term and extensive use of disinfectants, which brings great challenges to hospital infection control. As a notorious multidrug-resistant bacterium, carbapenem-resistant Klebsiella pneumoniae (CRKP) is one of the most common and difficult pathogens of nosocomial infection. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests of seven kinds of disinfectants (0.1% benzalkonium bromide, 4% aqueous chlorhexidine, 75% alcohol, entoiodine II, 2% glutaraldehyde, 2000 mg/L chlorine-containing disinfectants, and 3% hydrogen peroxide) were detected by the broth dilution method. Three efflux pump genes (oqxA, oqxB, and qacE∆1-sul1) were detected by PCR. The mean MIC value of aqueous chlorhexidine from the intensive care unit (ICU) (0.0034%) was significantly higher than that from non-ICUs (0.0019%) (p < 0.05). The positive rates of three efflux pump genes oqxA, oqxB and qacE∆1-sul1 were 60.9% (39/64), 17.2% (11/64) and 71.9% (46/64) in the detected CRKP isolates, respectively. This study discovered that CRKP strains demonstrated extensive resistance to clinical disinfectants and suggest that it is necessary to perform corresponding increases in the concentration of aqueous chlorhexidine and chlorine-containing disinfectants on the basis of current standards in the healthcare industry.

3.
Immun Inflamm Dis ; 9(4): 1428-1438, 2021 12.
Article in English | MEDLINE | ID: mdl-34647429

ABSTRACT

INTRODUCTION: Diabetic foot ulcer infection (DFI) is an infectious disease of the skin and soft tissue in diabetics notorious for making rapid progress and being hard to cure. Staphylococcus aureus (S. aureus), most frequently detected in DFI, recently was suggested as an intracellular pathogen that can invade and survive within mammalian host cells. Autophagy in macrophages plays a vital immune role in combating intracellular pathogens through bacterial destruction, but there is a lack of empirical research about the infection characteristics and autophagy in diabetic skin infection. METHODS: Here, we used streptozotocin-induced Sprague Dawley rats as a diabetic skin wound model to examine the S. aureus clearance ability and wound healing in vitro. Western blot and immunofluorescence staining were used to evaluate the autophagic flux of the macrophages in diabetic rats dermis, even with S. aureus infection. RESULTS: We demonstrated that infections in diabetic rats appeared more severe and more invasive with weakened pathogen clearance ability of the host immune system, which coincided with the suppressed autophagic flux in dermal macrophages, featured by a significant increase in endogenous LC3II/I and in p62. CONCLUSIONS: Our results first provided convincing evidence that autophagy of macrophages was dysfunctional in diabetes, especially after being infected by S. aureus, which weakens the intracellular killing of S. aureus, potentially worsens the infections, and accelerates the infection spread in the diabetic rat model. Further understanding of the special immune crosstalk between diabetes host and S. aureus infection through autophagic factors will help to explain the complex clinical phenomenon and guarantee the development of effective therapies for diabetic foot infections.


Subject(s)
Diabetes Mellitus, Experimental , Staphylococcal Infections , Animals , Autophagy , Macrophages , Rats , Rats, Sprague-Dawley , Staphylococcus aureus , Streptozocin/toxicity
4.
BMC Infect Dis ; 18(1): 122, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29529992

ABSTRACT

BACKGROUND: Medical laboratory staff are a high-risk population for colonization of Staphylococcus aureus (S. aureus) due to direct and dense contact with the pathogens; however, there is limited information about this colonization. This study sought to determine the prevalence and molecular characteristics of nasal colonization by S. aureus in medical laboratory staff in Guangzhou, southern China, and to compare the differences between microbiological laboratory (MLS) and non-microbiological laboratory (NMLS) staff. METHODS: S. aureus colonization was assessed by nasal swab cultures from 434 subjects, including 130 MLSs and 304 NMLSs from 33 hospitals in Guangzhou. All S. aureus isolates underwent the antimicrobial susceptibility test, virulence gene detection and molecular typing. RESULTS: The overall prevalence of S. aureus carriage was 20.1% (87/434), which was higher in MLSs than in NMLSs (26.2% vs. 17.4%, P < 0.05), while the prevalence of Methicillin-resistant S. aureus (MRSA) was similar. Living with hospital staff was associated with S. aureus carriage. The majority of the isolates harboured various virulence genes, and those in MLSs appeared less resistant to antibiotics and more virulent than their counterparts. A total of 37 different spa types were detected; among these, t338, t437, t189 and t701 were the most frequently encountered types. T338 was the main spa type contributing to nasal colonization Methicillin-sensitive S. aureus (MSSA) (13.0%), and t437-SCCmec IV was predominant in MRSA isolates (40%). CONCLUSIONS: These findings provide insight into the risk factors, molecular epidemiology and virulence gene profiles of S. aureus nasal carriage among the medical laboratory staff in Guangzhou.


Subject(s)
Nasal Cavity/microbiology , Staphylococcus aureus/isolation & purification , Virulence/genetics , Adult , Anti-Bacterial Agents/pharmacology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , China/epidemiology , Female , Genotype , Health Personnel , Hospitals , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Middle Aged , Molecular Typing , Prevalence , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism , Young Adult
5.
Ann Clin Microbiol Antimicrob ; 17(1): 11, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29566704

ABSTRACT

BACKGROUND: Cardiobacterium is a fastidious Gram-negative bacillus, and is a rare human pathogen in clinical settings. Herein, we describe a case of Cardiobacterium valvarum (C. valvarum) endocarditis with a rare complication of cerebral hemorrhage after mitral valve replacement (MVR), tricuspid valve prosthesis (TVP) and vegetation removal operation. CASE PRESENTATION: A 41-year-old woman who had a history of gingivitis developed into infective endocarditis due to the infection of C. valvarum. Then, she was hospitalized to receive MVR, TVP and vegetation removal operation. The indicators of patient tended to be normal until the abrupt cerebral hemorrhage occurred on day 15 after operation. This is the first well-described case of C. valvarum infection in China, and the first report of C. valvarum endocarditis with cerebral hemorrhage after MVR, TVP and vegetation removal operation worldwide. CONCLUSIONS: We reported the first case of C. valvarum infection in China clinically, with a rare complication of cerebral hemorrhage after MVR, TVP and vegetation removal operation.


Subject(s)
Cardiobacterium/pathogenicity , Cerebral Hemorrhage/complications , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/surgery , Gram-Negative Bacterial Infections/microbiology , Adult , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Blood/microbiology , Cardiobacterium/drug effects , Cardiobacterium/isolation & purification , China , Endocarditis, Bacterial/blood , Endocarditis, Bacterial/pathology , Female , Gram-Negative Bacterial Infections/blood , Gram-Negative Bacterial Infections/pathology , Heart Valve Prosthesis/microbiology , Humans , Microbial Sensitivity Tests , Mitral Valve/microbiology , Mitral Valve/surgery
6.
Int J Endocrinol ; 2017: 8694903, 2017.
Article in English | MEDLINE | ID: mdl-29075293

ABSTRACT

OBJECTIVE: To understand the bacterial profile and antibiotic resistance patterns in diabetic foot infection (DFI) in different Wagner's grades, IDSA/IWGDF grades, and different ulcer types in Guangzhou, in order to provide more detailed suggestion to the clinician about the empirical antibiotic choice. METHODS: 207 bacteria were collected from 117 DFIs in Sun Yat-sen Memorial Hospital from Jan.1, 2010, to Dec.31, 2015. The clinical data and microbial information were analyzed. RESULTS: The proportion of Gram-negative bacteria (GNB) was higher than Gram-positive bacteria (GPB) (54.1% versus 45.9%), in which Enterobacteriaceae (73.2%) and Staphylococcus (65.2%) were predominant, respectively. With an increasing of Wagner's grades and IDSA/IWGDF grades, the proportion of GNB bacterial infection, especially Pseudomonas, was increased. Neuro-ischemic ulcer (N-IFU) was more susceptible to GNB infection. Furthermore, with the aggravation of the wound and infection, the antibiotic resistance rates were obviously increased. GPB isolated in ischemic foot ulcer (IFU) showed more resistance than the N-IFU, while GNB isolates were on the opposite. CONCLUSIONS: Different bacterial profiles and antibiotic sensitivity were found in different DFU grades and types. Clinician should try to stay updated in antibiotic resistance pattern of common pathogens in their area. This paper provided them the detailed information in this region.

7.
Chemosphere ; 80(11): 1393-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20580057

ABSTRACT

Pot-test experiments were conducted to study the influences of mulching and fertilizing on the migration of heavy metals from soil to Vicia faba (broad bean). Semi-transparent film was used to mulch soil. Swine manure compost was mixed with soil at a rate of 50 mg kg(-1) to fertilize the soil. Broad bean was grown for several months until fruits were formed. Soils and bean parts were sampled to analyze and fractionate heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn). Mulching promoted an obvious growth of broad bean. Fertilizing decreased soil pH and increased organic matter content and conductivity. Mulching reduced the exchangeable metal fractions by 5-52%. Fertilizing, in contrast, increased the exchangeable fractions of most of the metals except Fe and Pb by 20-295%. While the two cultivations increased obviously metal concentrations in bean laminas as compared to un-mulched and un-fertilized controls, the levels of most of the metals except Pb decreased in bean fruits. No clear relationships existed in roots and caudices in terms of metal levels. Calculated bioconcentration factors (BCF) and transfer factors (TF) indicate that the cultivations had little influences on the metal enrichments in roots, but promoted their migration from roots to laminas. In particular, mulching greatly promoted the absorption and translocation of Fe, while fertilizing enhanced the bean fruit uptake of Pb. Further studies on the influence of cultivation practices on heavy metal migration in soil-plant systems are recommended to acquire more information for evaluation of crop safety.


Subject(s)
Metals, Heavy/metabolism , Soil Pollutants/metabolism , Soil/analysis , Vicia faba/metabolism , Agriculture , Kinetics , Metals, Heavy/analysis , Soil Pollutants/analysis , Vicia faba/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...