Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Imaging Behav ; 18(1): 73-82, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37874444

ABSTRACT

Type 2 diabetes mellitus (T2DM) and cognitive dysfunction are highly prevalent disorders worldwide. Although visual network (VN) alteration and functional-structural coupling are potential warning factors for mild cognitive impairment (MCI) in T2DM patients, the relationship between the three in T2DM without MCI is unclear. Thirty T2DM patients without MCI and twenty-nine healthy controls (HC) were prospectively enrolled. Visual components (VC) were estimated by independent component analysis (ICA). Degree centrality (DC), amplitude of low frequency fluctuation (ALFF) and fractional anisotropy (FA) were established to reflect functional and structural characteristics in these VCs respectively. Functional-structural coupling coefficients were further evaluated using combined FA and DC or ALFF. Partial correlations were performed among neuroimaging indicators and neuropsychological scores and clinical variables. Three VCs were selected using group ICA. Deteriorated DC, ALFF and DC-FA coefficients in the VC1 were observed in the T2DM group compared with the HC group, while FA and ALFF-FA coefficients in these three VCs showed no significant differences. In the T2DM group, DC in the VC1 positively correlated with 2 dimensions in the California Verbal Learning Test, including Trial 4 and Total trial 1-5. The impaired DC-FA coefficients in the VC1 markedly affected the Total perseverative responses % of the Wisconsin Card Sorting Test. These findings indicate that DC and DC-FA coefficients in VN may be potential imaging biomarkers revealing early cognitive deficits in T2DM.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Magnetic Resonance Imaging , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Brain/diagnostic imaging , Neuroimaging
2.
Front Neurosci ; 17: 1301778, 2023.
Article in English | MEDLINE | ID: mdl-38125399

ABSTRACT

Background: Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are aging related diseases with high incidence. Because of the correlation of incidence rate and some possible mechanisms of comorbidity, the two diseases have been studied in combination by many researchers, and even some scholars call AD type 3 diabetes. But the relationship between the two is still controversial. Methods: This study used seed-based d mapping software to conduct a meta-analysis of the whole brain resting state functional magnetic resonance imaging (rs-fMRI) study, exploring the differences in amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF) between patients (AD or T2DM) and healthy controls (HCs), and searching for neuroimaging evidence that can explain the relationship between the two diseases. Results: The final study included 22 datasets of ALFF and 22 datasets of CBF. The results of T2DM group showed that ALFF increased in both cerebellum and left inferior temporal gyrus regions, but decreased in left middle occipital gyrus, right inferior occipital gyrus, and left anterior central gyrus regions. In the T2DM group, CBF increased in the right supplementary motor area, while decreased in the middle occipital gyrus and inferior parietal gyrus. The results of the AD group showed that the ALFF increased in the right cerebellum, right hippocampus, and right striatum, while decreased in the precuneus gyrus and right superior temporal gyrus. In the AD group, CBF in the anterior precuneus gyrus and inferior parietal gyrus decreased. Multimodal analysis within a disease showed that ALFF and CBF both decreased in the occipital lobe of the T2DM group and in the precuneus and parietal lobe of the AD group. In addition, there was a common decrease of CBF in the right middle occipital gyrus in both groups. Conclusion: Based on neuroimaging evidence, we believe that T2DM and AD are two diseases with their respective characteristics of central nervous activity and cerebral perfusion. The changes in CBF between the two diseases partially overlap, which is consistent with their respective clinical characteristics and also indicates a close relationship between them. Systematic review registration: PROSPERO [CRD42022370014].

3.
Cereb Cortex ; 33(9): 5336-5346, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36310091

ABSTRACT

Disturbance of neurovascular coupling (NVC) is suggested to be one potential mechanism in type 2 diabetes mellitus (T2DM) associated mild cognitive impairment (MCI). However, NVC evidence derived from functional magnetic resonance imaging ignores the relationship of neuronal activity with vascular injury. Twenty-seven T2DM patients without MCI and thirty healthy controls were prospectively enrolled. Brain regions with changed susceptibility detected by quantitative susceptibility mapping (QSM) were used as seeds for functional connectivity (FC) analysis. NVC coefficients were estimated using combined degree centrality (DC) with susceptibility or cerebral blood flow (CBF). Partial correlations between neuroimaging indicators and cognitive decline were investigated. In T2DM group, higher susceptibility values in right hippocampal gyrus (R.PHG) were found and were negatively correlated with Naming Ability of Montreal Cognitive Assessment. FC increased remarkably between R.PHG and right middle temporal gyrus (R.MTG), right calcarine gyrus (R.CAL). Both NVC coefficients (DC-QSM and DC-CBF) reduced in R.PHG and increased in R.MTG and R.CAL. Both NVC coefficients in R.PHG and R.MTG increased with the improvement of cognitive ability, especially for executive function. These demonstrated that QSM and DC-QSM coefficients can be promising biomarkers for early evaluation of cognitive decline in T2DM patients and help to better understand the mechanism of NVC.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Brain , Cognitive Dysfunction/pathology , Cognition/physiology , Temporal Lobe , Magnetic Resonance Imaging/methods
4.
Front Neurol ; 14: 1289934, 2023.
Article in English | MEDLINE | ID: mdl-38162449

ABSTRACT

Background: Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods: In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results: The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion: PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration: https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).

5.
Front Neurol ; 13: 1022793, 2022.
Article in English | MEDLINE | ID: mdl-36419535

ABSTRACT

Objectives: To quantitatively summarize the specific changes in brain structure and function in migraine patients. Methods: A literature screening of migraine was conducted from inception to Sept 1, 2022, in PubMed, Web of Science, Cochrane Library, and Medline databases using the keyword combination of "migraine and MRI." Activation likelihood estimation (ALE) was performed to assess the differentiation of functional connectivity (FC), regional homogeneity (ReHo), and gray matter volume (GMV) of migraine patients. Results: Eleven voxel-based morphometry (VBM) studies and 25 resting-state fMRI (rs-fMRI) studies (16 FC and 9 ReHo studies) were included in this study. ALE analysis revealed the ReHo increase in the brainstem and left thalamus, with no decreased area. Neither increased nor decreased regions were detected in FC and GMV of migraine patients. Conclusions: The left thalamus and brainstem were the significantly activated regions of migraine. It is a meaningful insights into the pathophysiology of migraine. The consistent alterated brain areas of morphometrical and functional in migraine patients were far from reached based on current studies.

6.
Front Neurol ; 13: 923310, 2022.
Article in English | MEDLINE | ID: mdl-36090859

ABSTRACT

Objective: Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods: Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results: The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion: T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].

7.
Nutr Diabetes ; 12(1): 39, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970833

ABSTRACT

AIMS/HYPOTHESIS: Brain structure abnormality in patients with type 2 diabetes mellitus (T2DM)-related cognitive dysfunction (T2DM-CD) has been reported for decades in magnetic resonance imaging (MRI) studies. However, the reliable results were still unclear. This study aimed to make a systemic review and meta-analysis to find the significant and consistent gray matter (GM) and white matter (WM) alterations in patients with T2DM-CD by comparing with the healthy controls (HCs). METHODS: Published studies were systemically searched from PubMed, MEDLINE, Cochrane Library and Web of Science databases updated to November 14, 2021. Studies reporting abnormal GM or WM between patients with T2DM-CD and HCs were selected, and their significant peak coordinates (x, y, z) and effect sizes (z-score or t-value) were extracted to perform a voxel-based meta-analysis by anisotropic effect size-signed differential mapping (AES-SDM) 5.15 software. RESULTS: Total 15 studies and 16 datasets (1550 participants) from 7531 results were involved in this study. Compared to HCs, patients with T2DM-CD showed significant and consistent decreased GM in right superior frontal gyrus, medial orbital (PFCventmed. R, BA 11), left superior temporal gyrus (STG. L, BA 48), and right calcarine fissure / surrounding cortex (CAL. R, BA 17), as well as decreased fractional anisotropy (FA) in right inferior network, inferior fronto-occipital fasciculus (IFOF. R), right inferior network, longitudinal fasciculus (ILF. R), and undefined area (32, -60, -42) of cerebellum. Meta-regression showed the positive relationship between decreased GM in PFCventmed.R and MoCA score, the positive relationship between decreased GM in STG.L and BMI, as well as the positive relationship between the decreased FA in IFOF.R and age or BMI. CONCLUSIONS/INTERPRETATION: T2DM impairs the cognitive function by affecting the specific brain structures. GM atrophy in PFCventmed. R (BA 11), STG. L (BA 48), and CAL. R (BA 17), as well as WM injury in IFOF. R, ILF. R, and undefined area (32, -60, -42) of cerebellum. And those brain regions may be valuable targets for future researches. Age, BMI, and MoCA score have a potential influence on the altered GM or WM in T2DM-CD.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , White Matter , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , White Matter/diagnostic imaging , White Matter/pathology
8.
Brain Sci ; 12(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36009176

ABSTRACT

Current findings on brain structural alterations in complex regional pain syndrome (CRPS) are heterogenous and controversial. This study aimed to perform a systematic review and meta-analysis to explore the significant gray matter volume (GMV) abnormalities between patients with CRPS and healthy controls (HCs). A systematic search of the PubMed, Web of Science, and MEDLINE databases was performed, updated through 27 January 2022. A total of five studies (93 CRPS patients and 106 HCs) were included. Peak coordinates and effect sizes were extracted and meta-analyzed by anisotropic effect size-signed differential mapping (AES-SDM). Heterogeneity, sensitivity, and publication bias of the main results were checked by the Q test, jackknife analysis, and the Egger test, respectively. Meta-regression analysis was performed to explore the potential impact of risk factors on GMV alterations in patients with CRPS. The main analysis exhibited that patients with CRPS had increased GMV in the left medial superior frontal gyrus (SFGmedial.L), left striatum, and an undefined area (2, 0, -8) that may be in hypothalamus, as well as decreased GMV in the corpus callosum (CC) (extending to right supplementary motor area (SMA.R), right median cingulate/paracingulate gyri (MCC.R)), and an undefined area (extending to the right caudate nucleus (CAU.R), and right thalamus (THA.R)). Meta-regression analysis showed a negative relationship between increased GMV in the SFGmedial.L and disease duration, and the percentage of female patients with CRPS. Brain structure abnormalities in the sensorimotor regions (e.g., SFGmedial.L, SMA.R, CAU.R, MCC.R, and THA.R) may be susceptible in patients with CRPS. Additionally, sex differences and disease duration may have a negative effect on the increased GMV in SFGmedial.L.

SELECTION OF CITATIONS
SEARCH DETAIL
...