Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Ann Vasc Surg ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032593

ABSTRACT

BACKGROUND: In recent years, compression therapy has attracted gradually increasing clinical attention in lower extremity venous diseases. However, basic concepts and clear nomenclature, standard treatment methods, and consistent product standards for pressure equipment are lacking. Therefore, developing clinical guidelines for compression therapy is essential to improving the treatment of venous diseases. METHODS: Our panel generated strong (grade I), moderate (grade IIa and IIb), and weak (grade III) recommendations based on high-quality (class A), moderate-quality (class B), and low-quality (class C) evidence, using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach and the European Society of Cardiology (ESC) grading system. RESULTS: The panels made 30 recommendations from current evidence, focusing on 7 fields of lower extremity venous disease (venous thromboembolism, post-thrombotic syndrome (PTS), chronic venous insufficiency (CVI), varicose veins, hemangioma and vascular malformations, lymphedema, and venous ulcers) and 18 topics. CONCLUSIONS: Of the 30 recommendations made across the 18 topics, 7 were strong (grade I) and 17 were based on high-quality (class A) evidence, highlighting the need for further research of the use of compression therapy.

2.
Chin Med J (Engl) ; 134(1): 73-80, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33323827

ABSTRACT

BACKGROUND: Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy. METHODS: In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1. RESULTS: The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein. CONCLUSION: Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Arteriosclerosis Obliterans , Autophagy , Phosphoproteins , Adult , Arteriosclerosis Obliterans/genetics , GRB2 Adaptor Protein , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL