Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 11: 1303540, 2024.
Article in English | MEDLINE | ID: mdl-38352645

ABSTRACT

Introduction: A high recurrence rate of atrial fibrillation was monitored after catheter ablation for persistent atrial fibrillation. Sacubitril/valsartan can improve outcomes for patients with heart failure and ventricular tachycardia, but few studies examined whether it can reduce recurrence or improve cardiovascular outcomes in patients with persistent atrial fibrillation after catheter ablation. In this study, we will assess the effect of sacubitril/valsartan on sinus rhythm maintenance and incidence of major adverse cardiovascular events (MACE) in patients with persistent atrial fibrillation after catheter ablation through a randomized controlled trial (RCT). Methods: This is a multi-center, randomized, controlled, open-label, superiority clinical trial involving 462 patients without reduced ejection fraction heart failure after catheter ablation of persistent atrial fibrillation. Patients will be randomized to (1) receive the standard treatment strategy plus sacubitril/valsartan titration, or (2) receive the standard treatment strategy without taking sacubitril/valsartan. The primary outcome will be sinus rhythm maintenance rate over 12 months, monitored by random electrocardiogram and 24-h Holter electrocardiogram. Discussion: This study is designed to evaluate the effect of sacubitril/valsartan on sinus rhythm maintenance and incidence of major adverse cardiovascular events (MACE) in patients with persistent atrial fibrillation after catheter ablation. The results will evaluate sacubitril/valsartan as a novel treatment for improving prognosis and a complement to conventional drug therapy. Trial Registration: Registered with Chinese Clinical Trials Registry on 27 August 2022, identifier: ChiCTR2200062995.

2.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219622

ABSTRACT

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Subject(s)
Ferroptosis , Flame Retardants , Organophosphates , Female , Animals , NF-E2-Related Factor 2/genetics , Zebrafish , Acetylcholinesterase , Flame Retardants/toxicity , Kelch-Like ECH-Associated Protein 1/genetics , Reactive Oxygen Species , Organophosphorus Compounds/toxicity , Oxidative Stress , Xanthophylls
3.
Biomacromolecules ; 24(9): 4138-4147, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37640397

ABSTRACT

Small-diameter artificial blood vessels are increasingly being used in clinical practice. However, these vessels are prone to thrombus, and it is necessary to improve blood compatibility. Surface coating is one of the commonly used methods in this regard. Inspired by the biomimicry of mussels, the use of deposition technology to obtain coating coverage on the surface of fibers has significantly piqued the interest of researchers recently. In this study, tubular scaffolds consisting of a composite of poly(caprolactone), cellulose acetate, and tannic acid (TA) were electrospun, and then the scaffolds were treated with different Fe(III) solutions (iron(III) chloride hexahydrate (FeCl3'6H2O)) to obtain four tubular scaffolds: F0, F5, F15, and F45. According to scanning electron microscopy (SEM) and field emission-SEM results, TA/Fe(III) complex is coated on the fiber of the scaffold after post-treatment; the fiber surface morphology changes with different Fe(III) concentrations. This provides designability to the performance of tubular scaffolds. The tensile strength of the F5 tubular scaffold (3.33 MPa) is higher than that of F45 (3.14 MPa), while the strain (83.9%) of the F45 tubular stent was 2.26 times that of the F5 (37.2%). In addition, cytotoxicity and antithrombotic performance were evaluated. The test results show that surface TA/Fe(III) coating treatment can affect the cytotoxicity and anticoagulation performance of the scaffold surface. The biomimetic TA/Fe(III) coating of mussels used in this study improves the performance of artificial blood vessels.


Subject(s)
Blood Substitutes , Ferric Compounds , Poly A
4.
Int J Biol Macromol ; 226: 132-142, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36470437

ABSTRACT

Small-diameter artificial blood vessels have always faced the problem of thrombosis. In this research, three types of poly(-caprolactone)-cellulose acetate (PCL-CA) composite nanofiber membranes were prepared by various collectors to make into a tubular scaffold with a 4.5-mm diameter. The collector consisted of two sizes of stainless steel wire mesh large-mesh (LM) and small-mesh (SM), respectively. There is also a random flat (RF) that acts as the third type collector. The nanofiber membrane's surface structure mimicked the collectors' surface morphology, they named LM, SM and RF scaffolds. The water contact angles of RF and LM scaffolds are 126.5° and 105.5°, and the distinct square-groove construction greatly improves the contact angle of LM. The tubular scaffolds' radial mechanical property test demonstrated that the large-mesh (LM) tubular scaffold enhanced the strain and tensile strength; the tensile strength and strain are 30 % and 148 % higher than that of the random-flat (RF) tubular scaffold, respectively. The suture retention strength value of the LM tubular scaffold was 103 % higher than that of the RF tubular scaffold. The cytotoxicity and antithrombogenicity performance were also evaluated, the LM tubular scaffold has 88 % cell viability, and the 5-min blood coagulation index (BCI) value was 89 %, which is much higher than other tubular scaffolds. The findings indicate that changing the tubular scaffold's surface morphology cannot only enhance the mechanical and hydrophilic properties but also increase cell survival and antithrombogenicity performance. Thus, the development of a small-diameter artificial blood vessel will be a big step toward solving the problem on thrombosis. Furthermore, artificial blood vessel is expected to be a candidate material for biomedical applications.


Subject(s)
Blood Substitutes , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering , Polyesters/pharmacology , Polyesters/chemistry
5.
Biomacromolecules ; 23(10): 4074-4084, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36166624

ABSTRACT

Small-diameter artery disease is the most common clinical occurrence, necessitating the development of small-diameter artificial blood vessels. In this study, seven types of poly(-caprolactone)-cellulose acetate (PCL-CA) composite nanofiber membranes were prepared with different proportions of PCL and CA. The adhesion and growth of Mc3t3-e1 cells were considered to confirm the in vitro cytocompatibility of PCL-CA membranes. A smooth stainless-steel mandrel with a diameter of 4 mm was used to roll up the prepared nanofiber membranes to produce the tubular scaffold with 50 °C hot water. The tubular scaffolds were subjected to axial and circumferential tensile tests. The mechanical performance of the PCL-CA tubular scaffold could be improved by increasing the layers. In addition, the burst pressure (BP) of the tubular scaffolds was increased with the layers, and the BPs of six-layer (2380 ± 36.8 mmHg) and eight-layer (3720 ± 80.5 mmHg) tubular scaffolds were much higher than that of the human saphenous vein (2000 mmHg). The compression shape memory performances of the PCL-CA tubular scaffold with different layers were also investigated to simulate and analyze the contraction and expansion of tubular scaffolds. The experimental results showed that the compression strain of the tubular scaffold in the diameter direction reached 35%, and the ultimate shape recovery rate reached 87%. However, the shape fixity rate and shape recovery rate increased, demonstrating that the optimum number of layers can improve the compression shape memory performance of the tubular scaffold. The results of this study, including comprehensive morphological and mechanical properties and cytocompatibility, indicated the potential applicability of PCL-CA tubular scaffolds as tissue engineering grafts.


Subject(s)
Blood Substitutes , Tissue Scaffolds , Caproates , Cell Proliferation , Cellulose/analogs & derivatives , Hot Temperature , Humans , Lactones , Polyesters/pharmacology , Steel , Tissue Engineering/methods , Water
6.
Nanoscale Adv ; 4(18): 3804-3815, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133325

ABSTRACT

Exploration of high-performance electromagnetic interference (EMI) shielding materials has become a trend to address the increasing electromagnetic (EM) wave pollution environment. In this paper, oriented graphene fibre film (GFF)/polydimethylsiloxane (PDMS) nanocomposites with one-ply unidirectional, two-ply cross-ply, and two-ply unidirectional configurations were prepared using wet-spinning and hot-pressing techniques in a two-step process. Due to the anisotropic electrical performance of GFF, the one-ply laminate exhibits EMI shielding anisotropy that is affected by fibre orientation relative to the electric field component in EM waves. The maximum shielding difference at 8.8 GHz is up to 32.0 dB between the fibre orientation parallel to and perpendicular to the electric field component. In addition, we found that adding a layer of GFF is an intuitive method to enhance the shielding efficiency (SE) of GFF/PDMS nanocomposites by providing more interfaces to enhance absorption losses. An optimal EMI shielding performance of a two-ply unidirectional laminate is observed with an SE value of 50.6 dB, which shields 99.999% of EM waves. The shielding mechanisms are also discussed and clarified from the results of both experimental and theoretical analyses by adjusting the GFF structural parameters, such as the fibre orientation, areal density, number of plies and stacking sequence.

7.
Polymers (Basel) ; 13(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562417

ABSTRACT

Glass fiber fabrics/hollow glass microspheres (HGM)-waterborne polyurethane (WPU) textile composites were prepared using glass fiber, WPU, and HGM as skeleton material, binder, and insulation filler, respectively, to study the effect of HGM on the thermal insulation performance of glass fiber fabrics. Scanning electron microscopy, Instron 3367 tensile test instrument, thermal constant analysis, and infrared thermal imaging were used to determine the cross-sectional morphology, mechanical property, thermal conductivity, and thermal insulation property, respectively, of the developed materials. The results show that the addition of HGM mixed in WPU significantly enhanced thermal insulation performance of the textile composite with the reduction of thermal conductivity of 45.2% when the volume ratio of HGM to WPU is 0.8 compared with that of material without HGM. The composite can achieve the thermal insulation effect with a temperature difference of 17.74 °C at the temperature field of 70 °C. Meanwhile, the tensile strength of the composite is improved from 14.16 to 22.14 MPa. With these results, it is confirmed that designing hollow glass microspheres (HGM) is an effective way to develop and enhance the high performance of insulation materials with an obvious lightweight of the bulk density reaching about 50%.

8.
Langmuir ; 36(49): 14933-14941, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33259218

ABSTRACT

As interesting alternatives, electroactive actuators based on plasticized thermoplastic polyurethane (TPU) have shown their potential in developing soft robotics due to the large bending deformation, fast response, and good durability, especially their designable properties. Understanding the actuation mechanism is essential for controlling soft actuators as well as developing novel ones. In this work, the behaviors of the plasticizer and TPU membranes in electric fields were investigated and observed in situ by a microscope, showing that the plasticizer molecules migrated toward the anode of the actuator. It is found that there was a very thin plasticizer-rich layer formed in the material because of the accumulation of negatively charged plasticizer molecules, basing on the results of electrochemical impedance measurement and space charge measurement. This further led to a lower Young's modulus but an internal electric field with a higher density in this layer, resulting in the deformation of the actuator. Furthermore, based on the actuation mechanism, some actuation characteristics of the developed soft actuators were clarified. The maximum deflection of these actuators increased with the number of cycle tests, and in each cycle test, the deflection quickly reached the maximum value and then gradually decreased. It is believed that these characteristics are strongly related to the behaviors of plasticizer molecules, which were investigated accordingly.

9.
ACS Appl Mater Interfaces ; 12(37): 42179-42192, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32822534

ABSTRACT

Flexible strain sensors have shown great application value in wearable devices. In the past decades, researchers have spent numerous efforts on developing high-stretchability, excellent dynamic durability, and large linear working range flexible strain sensors and shaped a series of important research results. However, the viscoelasticity of the elastic polymer is always a big challenge to develop a flexible sensor. Here, to overcome this challenge, we developed a novel self-repairing carbon nanotubes/ethylene vinyl acetate (CNTs/EVA) fiber strain sensor prepared by embedding the CNTs on the surface of the swollen shape memory EVA fiber via the ultrasonic method. The CNTs/EVA fiber strain sensors responded with significant results, with high stretchability (190% strain), large linear working range (up to 88% strain), excellent dynamic durability (5000 cycles), and fast response speed (312 ms). In addition, the permanently damaged conductive network of the strain sensors, caused by the viscoelasticity of elastic polymer, can restore above the transforming temperature of the shape memory CNTs/EVA fiber. Moreover, the performance of the restored strain sensors was almost as same as that of the original strain sensors. Furthermore, human health monitoring tests show that the CNTs/EVA fiber has a broad application prospect for human health monitoring in wearable electronic devices.


Subject(s)
Ethylenes/chemistry , Nanotubes, Carbon/chemistry , Ultrasonic Waves , Vinyl Compounds/chemistry , Wearable Electronic Devices , Electric Conductivity , Humans , Particle Size , Surface Properties
10.
Mater Sci Eng C Mater Biol Appl ; 110: 110679, 2020 May.
Article in English | MEDLINE | ID: mdl-32204107

ABSTRACT

Herein we propose cellulose acetate/carbon nanotube/silver nanoparticles (CA/CNT/Ag) nanofiber composite for antibacterial applications. The nanofiber composite are expected to avoid harmful effects of silver (i.e. argyria and argyrosis) owing to anchoring of silver nanoparticles on carbon nanotubes (CNTs) and embedding of the composite inside cellulose acetate (CA) matrix. The carbon nanotubes/silver nanoparticles (CNT/Ag) nanocomposite localized inside the CA polymer matrix allow minimal/no direct contact of silver nanoparticles with human cells and are expected to show reduced silver leaching. The cellulose acetate (CA) nanofibers loaded with silver nanoparticles anchored multiwall carbon nanotubes (CNT/Ag) were fabricated by electrospinning. The samples were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), tensile strength tests and antibacterial assays. Synthesis of the CNT/Ag nanocomposite was confirmed with XPS, XRD, EDS and TEM analysis. SEM images showed regular morphology of the CA/CNT/Ag nanofiber composites. TEM images depicted anchoring of silver nanoparticles on CNTs and embedding of CNT/Ag in the CA nanofiber matrix. The antibacterial test results demonstrated excellent antibacterial performance of the CA/CNT/Ag. The CA/CNT/Ag samples ensured effective bacterial growth inhibition on agar plates, in liquid medium (optical density, OD590nm) (for 48 h) and in bactericidal assay (relative cell viability, %). Our results suggested CA/CNT/Ag composite nanofibers as potential candidate for safer antibacterial applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Silver/pharmacology , Cellulose/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Nanocomposites/chemistry , Nanofibers/ultrastructure , Nanotubes, Carbon/ultrastructure , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
11.
J Hazard Mater ; 383: 121123, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31520937

ABSTRACT

This work presents the first fabrication of smart nonwoven fabric (DSR-CZPP) with extraordinary reversible double-stimulus responsive wettability, where carboxyl groups of cellulose nanocrystals/zinc oxide (CNC/ZnO) nanohybrids deposited on fabric surface can bond with hydroxyl group of the PDMAEMA-b-PHEMA-b-PMAAAB triblock polymer brushes that was prepared by using methyl methacrylate (HEMA), dimethylaminoethyl methacrylate (DMAEMA) and methacrylamide-azobenzene monomer (MAAAB) via reversible addition-fragmentation chain transfer (RAFT). The peculiar reversible double-stimulus responsive wettability of the DSR-CZPP can be modulated by triggering hydrophilic/hydrophobic transitions and lipophilic/oleophobic transitions under dual-stimulations of pH and UV light irradiation. The special molecular structure of the triblock polymer brushes enabled DSR-CZPP to intelligent modulation of oil-water separation under the control of "UV & pH double switch", meanwhile CNC/ZnO simultaneously can induce the photocatalytic degradation of organic dyes. Moreover, DSR-CZPP can have high removal ratios of various pollutants, such as metal ion (Cu2+) and toxic organic solvent (silicone oil, acetone and chloroform). This smart and multifunctional fabric shows great potentials for treating complicated polluted water from most industrial fields.

12.
Glob Chall ; 3(11): 1900045, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31693011

ABSTRACT

Agricultural wastes such as rice husks (RHs) are valuable due to their feasibility to be converted into carbon materials, low cost, and abundancy in contrast to the conventional carbon material sources. In this study, RHs are carbonized at various temperatures from low to high temperatures, and their electromagnetic (EM) wave absorption properties are evaluated. Carbon materials, silicon carbide (SiC) whiskers, and SiC particles are obtained from RHs carbonized at 1500 °C (CRH1500) for 0.5 h with presence of Ar gas at 1 atm. In order to evaluate their EM wave absorption performance, complex permittivity and permeability are measured by using vector network analyzer, and the values are utilized in the reflection loss (R.L.) calculation according to the transmission line theory. CRH1500, 40 wt% with thickness of 1.6 mm exhibits minimum R.L. of ≈-55.4 dB (>99.9997% absorption) at 11.37 GHz and response bandwidth (R.L. < 10 dB, > 90% absorption) of 4.21 GHz. Low-cost and abundant RHs, carbonized at various temperatures, show significant absorption performance. Their absorption performance and response bandwidth are highly dependent on matching thickness, indicating that they can be easily modulated for promising electromagnetic wave absorber materials.

13.
Mater Sci Eng C Mater Biol Appl ; 105: 110077, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546450

ABSTRACT

Although silver based nanofibers possess excellent bactericidal and bacteriostatic characteristics. However, excess release/contact with silver may induce harmful side-effects including carcinoma, argyria, argyrosis and allergies. Similarly, silver depletion may limit prolonged antibacterial activities as well. Thus present research proposes electrospun CA/ZnO/AgNPs composite nanofibers for biologically safer and sustained antibacterial applications. The ZnO/AgNPs were synthesized using dopamine hydrochloride (Dopa) as reducing agent to immobilize AgNPs on ZnO nanoparticles. A simple solution-mixing procedure effectively generated AgNPs on ZnO nanoparticles. Strong adhesive characteristics of Dopa initiate adsorption of silver ions on ZnO nanoparticle surfaces and its metal ion reducing properties generate AgNPs. Additionally, the Dopa mediation generates strongly adhered AgNPs. The ZnO/AgNPs were used to fabricate CA/ZnO/AgNPs nanofibers. Characterization techniques, XRD, XPS, TEM, FTIR and SEM confirmed synthesis of nanocomposites. Crystallite sizes of ZnO and AgNPs calculated by Debye-Scherrer equation were 17.85 nm and 11.68 nm respectively. Antibacterial assays confirmed CA/ZnO/AgNP's effectiveness in growth inhibition of E. coli and S. aureus strains on agar plate and in liquid medium. The nanofiber composites demonstrated 100% bactericidal properties against both the test strains. Bacterial growth inhibition in LB medium for 108 h indicated suitability of CA/ZnO/AgNPs composite nanofibers in sustained antibacterial applications such as antibacterial wound dressings and other applications demanding sustained antimicrobial properties.


Subject(s)
Anti-Bacterial Agents , Escherichia coli/growth & development , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Silver , Staphylococcus aureus/growth & development , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Silver/chemistry , Silver/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
14.
Polymers (Basel) ; 11(7)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319518

ABSTRACT

The impact of hydroxypropylsulfonation/caproylation on the adhesion of cornstarch to polylactic acid (PLA) fibers was investigated for ameliorating the applications such as PLA sizing. The hydroxypropylsulfonated and caproylated cornstarch (HCS) samples with different degrees of substitution (DS) were synthesized by a hydroxypropylsulfonation of acid-converted cornstarch (ACS) with 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt (CHPS-Na) and subsequently a caproylation with caproic anhydride (CA). The HCS granules were characterized by Fourier transform infrared spectroscopic and scanning electron microscopy. The adhesion was evaluated by measuring the bonding forces of the PLA roving impregnated. The mechanical behaviors of the adhesive layers were estimated by determining the properties of the films. The results of adhesion measurement were also analyzed especially through the wetting and spreading of the paste on the fiber surfaces, as well as the failure type, internal stress and mechanical behaviors of the adhesive layers among fibers. Additionally, apparent viscosity and its stability of the pastes were also determined. It was found that hydroxypropylsulfonation/caproylation was not only able to obviously improve the adhesion of ACS to PLA fibers, but also capable of further improving the adhesion of hydroxypropylsulfonated starch (HS) to the fibers. With the rise in the total DS, the adhesion gradually increased. The two substituents improved the wetting and spreading, reduced the internal stress, lowered the probabilities of interfacial failure and cohesive failure, decreased the film brittleness, and increased the van der Waals force at the interfaces. Moreover, the HCS samples with a stability of above 85% could meet the demand on the stability for sizing. Considering the experimental results of the adhesion and the analysis of the results, HCS showed potential in the application of PLA sizing.

15.
ACS Appl Mater Interfaces ; 11(27): 24435-24446, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31257847

ABSTRACT

Nature employs supramolecular self-assembly to organize many molecularly complex structures. Based on this, we now report for the first time the supramolecular self-assembly of 3D lightweight nanocellulose aerogels using carboxylated ginger cellulose nanofibers and polyaniline (PANI) in a green aqueous medium. A possible supramolecular self-assembly of the 3D conductive supramolecular aerogel (SA) was provided, which also possessed mechanical flexibility, shape recovery capabilities, and a porous networked microstructure to support the conductive PANI chains. The lightweight conductive SA with hierarchically porous 3D structures (porosity of 96.90%) exhibited a high conductivity of 0.372 mS/cm and a larger area-normalized capacitance (Cs) of 59.26 mF/cm2, which is 20 times higher than other 3D chemically cross-linked nanocellulose aerogels, fast charge-discharge performance, and excellent capacitance retention. Combining the flexible SA solid electrolyte with low-cost nonwoven polypropylene and PVA/H2SO4 yielded a high normalized capacitance (Cm) of 291.01 F/g without the use of adhesive that was typically required for flexible energy storage devices. Furthermore, the supramolecular conductive aerogel could be used as a universal sensitive sensor for toxic gas, field sobriety tests, and health monitoring devices by utilizing the electrode material in lightweight supercapacitor and wearable flexible devices.

16.
Carbohydr Polym ; 207: 640-649, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30600049

ABSTRACT

Silver nanoparticles (AgNPs) are effective antimicrobial agents however excess release of silver causes argyria and argyrosis. An strategy to avoid these detrimental side effects is immobilization of AgNPs on several organic and inorganic substrates. Herein, we propose immobilization of AgNPs on TiO2 nanoparticles by an environmentally green process subsequently incorporating the TiO2/AgNP into cellulose acetate (CA) nanofiber matrix. The TiO2/AgNP nanocomposite particles were prepared by coating TiO2 nanoparticles with polydopamine hydrochloride followed by a treatment in AgNO3 solution. Subsequently, the TiO2/AgNP nanocomposites were added into CA solution and electrospun to fabricate CA/TiO2/AgNP composite nanofibers. The samples were characterized by XRD, TEM, XPS, SEM, EDX, FTIR and antibacterial assays. Synthesis of TiO2/AgNP and its loading into CA nanofibers was confirmed by XRD, XPS, TEM and EDX analysis. SEM images indicated regular morphology of the nanofibers. The antibacterial test results confirmed CA/TiO2/AgNP composite nanofibers having excellent antibacterial performances for 36 h and substantial bacterial growth inhibition for 72 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Silver/pharmacology , Titanium/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Argyria/prevention & control , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cellulose/chemistry , Escherichia coli/drug effects , Green Chemistry Technology/methods , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Nanocomposites/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Silver/chemistry , Staphylococcus aureus/drug effects
17.
RSC Adv ; 9(17): 9401-9409, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-35520719

ABSTRACT

Gradient vapor grown carbon fiber (VGCF) based shape memory polyurethane foam (VGCF@SMPUF) was fabricated by alternate dipping in a gradually diluted VGCF@SMPU/DMF solution and distilled water for shape memory driven microwave shielding. Shape memory performance for this VGCF@SMPUF was achieved by heat transfer of thermally conductive VGCF. Shielding effectiveness (SE) was adjusted through different degrees of angle recovery. A consistent shielding effect from either side indicated that electromagnetic reflection may take place at both the surface and inside of the non-homogeneous composite shield. For shape memory effect, hot compression made this VGCF@SMPUF achieve a faster recovery time and higher recovery ratio owing to improved thermal conductivity. Moreover, VGCF@SMPUF, which was bent to the positive side (PS) with a higher VGCF content, showed shorter recovery time and higher recovery ratio than that bent to the negative side (NS) with a lower VGCF content. We attribute this result to the relatively small mechanical compression strength of the negative side with the lower VGCF content at the bending point when expanding from the positive side. Furthermore, hot compression obviously improved the shielding effectiveness of the VGCF@SMPUF, mainly through a considerable increase of the electrical conductivity. The VGCF@SMPUF hot compressed to a thickness of 0.11 mm achieved a SE value of ∼30 dB, corresponding to a shielding efficiency of ∼99.9%.

18.
Carbohydr Polym ; 205: 35-41, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30446114

ABSTRACT

In the present work, we develop novel method of loading metal-organic frameworks (UiO-66 and UiO-66-NH2) on the flexible cellulose aerogels as metal-organic frameworks@cellulose aerogels composite materials by using in situ growth procedure at room temperature. The as prepared metal-organic frameworks@cellulose aerogels composite materials were well characterized via SEM, XRD, atomic absorption spectrometer, and TG analysis, besides the adsorption of Pb2+ and Cu2+ in metal-organic frameworks@cellulose aerogels composite materials was investigated. The amount of metal ions adsorbed by metal-organic frameworks@cellulose aerogels composite materials is equal to the sum of metal-organic frameworks and cellulose aerogels, indicating that the metal-organic frameworks are not blocked after cellulose aerogels growth and still have adsorption properties. It was found that metal-organic frameworks@cellulose aerogels composite materials can be recycled to adsorb Pb2+ and Cu2+ in water after simple cleaning. The equilibrium adsorption capacity of Pb2+ adsorbed by UiO-66-NH2@CA was 89.40 mg g-1, and can be easily reused for more than 5 cycles without significant decrease in performance. Moreover, the maximum decomposition temperature (Tmax) of UiO-66-NH2@CA was increased by 62.1℃. This result suggested that such metal-organic frameworks@cellulose aerogels composite materials could adsorb heavy metal ions in water could by avoiding secondary pollution and show great potential in water treatment.

19.
Ultrason Sonochem ; 51: 399-405, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30262234

ABSTRACT

We present our research on dyeability of polyacrylonitrile (PAN) nanofibers following ultrasonic dyeing method. Although PAN has been extensively utilized in textile apparel, sportswear, upholstery and home furnishing, however, coloration of PAN nanofibers has not yet been reported. PAN is a compact fiber while the nanofiber structure makes it more difficult to color PAN nanofibers. PAN is generally dyed with basic dyes and dyeing is carried out in acidic conditions, while the dyeing process takes about two hours at boiling temperature. A systematic study on dyeability of PAN nanofibers will extend its use in textile apparel industry. Thus, we used ultrasonic energy and first time conducted our research on dyeability of electrospun PAN nanofibers using disperse dyes. Dyeing process parameters such as dyeing time, temperatures and concentrations of dyes were optimized. Ultrasonic dyeing of PAN nanofibers was compared with its conventional dyeing as well. Affect of ultrasonic dyeing on the morphology, chemical state, crystallographic structure and mechanical strength of PAN nanofibers has been studied. PAN nanofiber samples were characterized by SEM, FTIR, XRD and tensile strength tests. The results revealed 80 °C and 60 min as optimum temperature and time for ultrasonic dyeing of PAN nanofibers. The ultrasonic dyeing does not affect morphology, chemical and crystalline structure of the PAN nanofibers while it improves their mechanical strength. Our research suggests dyeability of PAN nanofibers with disperse dyes by ultrasonic method and their subsequent use in textile apparels.

20.
J Biomater Sci Polym Ed ; 30(7): 501-507, 2019 05.
Article in English | MEDLINE | ID: mdl-29962284

ABSTRACT

Currently available synthetic grafts demonstrate moderate success at the macrovascular level, but there are still challenges at small vascular scale (inner diameter of less than 6 mm). In this paper, silk fibroin (SF)/polyurethane (PU)/SF three-layer drug carrier nanofibrous tubes were developed for blood vessel repair with several advantages over existing designs. Our design consisted of a bionic three-layer microtube that was synthesized from the drug carrier SF and oligomeric proanthocyanidin nanofibers as the inner layer, PU nanofibers as the middle layer, and SF nanofibers as the outer layer. The results suggested that these three-layer tubes are attractive biocompatible materials for use as vascular grafts.


Subject(s)
Coated Materials, Biocompatible/chemistry , Drug Carriers/chemistry , Fibroins/chemistry , Nanofibers/chemistry , Polyurethanes/chemistry , 3T3 Cells , Animals , Blood Vessel Prosthesis , Coated Materials, Biocompatible/metabolism , Drug Carriers/metabolism , Humans , Mice , Proanthocyanidins/chemistry , Surface Properties , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...