Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647668

ABSTRACT

Wastewater treatment recycling is critical to ensure safe water supply or to overcome water shortage. Herein, we developed metallic Co integration onto MnO nanorods (MON) resulting in a phase-separated synergetic catalyst by creating more Mn(III) via the Jahn-Teller effect and oxygen vacancies and improving the redox capability of Co nanoparticles mediated by a thin carbon layer. Additionally, the N-doped surface carbon network on MON contributes to polar sites, facilitating the enrichment of contaminants around reactive sites, thereby shortening the migration of reactive oxidative species (ROS) toward contaminants. The optimized MnO@Co/C-600 exhibits superior PMS activation efficiency for bisphenol A degradation (0.463 min-1), displaying nearly a 20-fold enhancement in the rate constant compared to Mn3O4/C-600. Subsequent experiments involving variable modulation and extension were conducted to further elucidate the multiple synergistic effects. The mechanism study further confirms the synergy of ˙SO4-, ˙OH, ˙O2-, and 1O2, along with additional electron transfer pathways. The intermediates generated during degradation pathways and their toxicity to aquatic organisms were identified. Notably, a monolith integrated catalyst was explored by anchoring MnO@Co/C-600 onto a tailored melamine sponge based on Ca ion triggered crosslink tactic for the photothermal degradation of bisphenol A, tetracycline and norfloxacin, endowed with easy recovery and good stability. Furthermore, we demonstrated that the total organic carbon removal of multiple contaminants surpassed that of sole contaminants.

2.
Gene ; 498(2): 177-82, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22391093

ABSTRACT

We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cloning, Molecular , Erythromycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ethidium/pharmacology , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae/metabolism , Lipoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mutation , Novobiocin/pharmacology , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Rhodamines/pharmacology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...