Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119788, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100857

ABSTRACT

A novel rare earth separation system composed of lauric acid (LA) and primary ammonium (RNH2) was studied. Compared with individual LA and RNH2, the mixed extraction system can significantly improve the extraction and separation ability of rare earth (RE). When LA and RNH2 are mixed in an equal molar ratio, the synergistic coefficient for extracting Nd(III) in the system reaches 136.85. Effective separation of Nd from Co and Ni can be achieved, with the separation coefficients of 1503 and 2762 for Nd/Co and Nd/Ni, respectively. The ion association mechanism of developed extraction system can avoid the generation of saponification wastewater. Thus, the negative impact of saponification wastewater on the economy and environment can be reduced. The extraction system is simple to be prepared and easy to be stripped, which helps to reduce acid and alkali consumption. Application of this extraction system can effectively realize the separation of RE elements La, Ce, Pr, Nd and transition metals Co, Ni, Mn in nickel-metal hydride (NiMH) battery. This paper provides a new strategy for the development of ionic liquid saponification technology without saponified wastewater.


Subject(s)
Lauric Acids , Metals, Rare Earth , Nickel , Amines , Wastewater , Metals
2.
J Hazard Mater ; 460: 132465, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703731

ABSTRACT

In this work, the new hydrophobic deep eutectic solvents (HDESs) based on 2-hexyldecanoic acid (HDA) as a hydrogen bond donor (HBD) were used to selectively enrich trace Th from radioactive waste leach solution. These HDESs are characterized by low toxicity, bio-friendliness, low viscosity and sufficient hydrophobicity. Compared with Al, Mg, Ca and RE, HDESs exhibited exceptional selectivity for Th extraction, along with high loading capacity, easy stripping and stable reusability. The mechanism of Th extraction by the HDES is a cation exchange reaction. Based on the thymol (TL):HDA (1:3) HDES, a short flow closed-loop recovery process of Th in the leach solution of radioactive waste residue was developed. After a single-step extraction, the extraction percentage (E%) of Th exceeded 98.0%, while the E% of other elements was less than 0.14%. After stripping, the concentration of Th in the concentrated solution reached 2.16 × 103 mg/L with a purity of 74.2%, which could be directly used for subsequent purification. By adjusting the pH to 4.00, the raffinate was used as a feed solution for RE elements recovery. The HDES-based extraction strategy for Th is simple, safe, efficient and environmentally friendly, providing a new idea for the recovery of radioactive waste residues.

3.
J Environ Manage ; 304: 114164, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34864416

ABSTRACT

A novel method for the selective removal and recovery of copper ion from copper-containing wastewater by extraction-precipitation with p-tert-octyl phenoxy acetic acid as a precipitant is presented. The morphology, thermal stability and solubility of POAA were synthesized and characterized. Then the application of POAA to precipitate copper from simulated copper-containing wastewater was studied. The effects of some factors (i.e., time, pH, temperature, dosage of precipitant) on copper precipitation efficiency (P%) and water solubility of POAA were discussed. The extraction-precipitation mechanism of POAA and Cu2+ was investigated by slope analysis combined with SEM, EDS, XPS and IR spectra. The concentration and purity of copper from industrial wastewater increased from 100.2 mg/L to 27,916 mg/L and 13.71%-93.01% respectively, treating by the proposed extraction-precipitation. Moreover, POAA revealed good stability in the recycling processes. Extraction-precipitation strategy is simple, efficient and sustainable, which can effectively reduce the volume of sludge in the process of wastewater treatment and produce copper concentrated solution with industrial value, which has revealed application potential for the clean production of copper smelting enterprises.


Subject(s)
Wastewater , Water Purification , Acetic Acid , Copper/analysis , Hydrogen-Ion Concentration
4.
J Hazard Mater ; 406: 124654, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33321319

ABSTRACT

Rare earth elements (REEs) have attracted widely attentions because of their excellent properties, however, radioactive waste residue generated during the REEs production has created serious environmental problems. This study aimed to develop a safer and cleaner technology, including residue leaching, thorium (Th) separating and REEs recovering, for the proper disposal of radioactive waste residue from ion-absorbed rare earth separation industry to reduce the environmental hazards. First, the chemical composition of residue was analyzed. Then, the leaching factors such as acid type, acid concentration and liquid-solid ratio were investigated and a multi-step leaching process was proposed to improve acid utilization and the leaching of REEs. After the multi-step leaching with HCl, the total leaching efficiency of REEs and Th were higher than 98.14% and 99.07%, respectively. Next, a commercial extractant of sec-octylphenoxy acetic acid (CA-12) was used to separate Th and enrich REEs from the residue leachate. The extraction factors of CA-12 toward Th were investigated in detail and a fractional extraction for separating Th and enriching lanthanides from the leachate of residue was carried out, showing that the separation efficiency of Th was higher than 99.53% and the concentration of lanthanides in the concentrated solution was 223.19 g L-1.

5.
Dalton Trans ; 49(13): 4060-4066, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32129379

ABSTRACT

Herein we report a new 4-fold interpenetrated metal-organic framework (MOF) functionalized with O- groups for selective Th(iv) capture, the activated samples 1a exhibited a high adsorption capacity for pure Th(iv) ions (Kd = 3.16 × 105 mL g-1) and the amount of metal ions adsorbed on the adsorbent was 165.61 mg g-1. A high removal efficiency of 99.75% was achieved within 10 min with an initial Th(iv) concentration of 100 mg L-1 and the adsorption data followed the pseudo-second-order model. In addition, the separation coefficient (S) of Th(iv) to metal ions with different valence states such as Th(iv)/La(iii), Th(iv)/Sm(iii), Th(iv)/Ho(iii), Th(iv)/Cd(ii) and Th(iv)/K(i) achieved values of 19.66, 26.83, 16.90, 11.26 and 255.79, respectively. Even given the fact that MOFs with O- groups showed high affinity for Pb(ii) ions, our adsorption studies for compound 1a revealed a separation coefficient (STh(IV)/Pb(II)) of 4.36. Further, the adsorption of Th(iv) ions to compound 1a was investigated by FT-IR, SEM-EDS and XPS.

6.
Waste Manag ; 93: 153-161, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31235052

ABSTRACT

The cathode powder is obtained by wet crushing and screening, and the leaching behavior of Li, Ni, Co, Cu, and Al is then investigated using a ternary leaching system composed of ammonia, ammonium sulfite, and ammonium bicarbonate. Ammonium sulfite is necessary as a reductant to improve the Li, Ni, and Co leaching efficiencies, and ammonium bicarbonate acts as a buffer in ammoniacal solutions. A detailed understanding of the selective leaching process is obtained by investigating the effects of parameters such as the leaching reagent composition, leaching time (0-300 min), temperature (40-90 °C), solid-to-liquid ratio (10-50 g/L), and agitation speed (300-700 rpm). It is found that Ni and Cu could be almost fully leached out, while Al is hardly leached and Li(60.53%) and Co(80.99%) exhibit a moderate leaching efficiency. The results show that the optimum solid-liquid ratio of the leaching system is 20 g/L, and the increase of temperature and reaction time is beneficial to metal leaching. The leaching kinetics analysis shows that the chemical reaction control explains the leaching behavior of Li, Ni, and Co well. Therefore, this work may be beneficial for further recycling valuable metals from leaching solutions by introducing an extraction agent.


Subject(s)
Ammonia , Lithium , Electric Power Supplies , Metals , Quaternary Ammonium Compounds , Recycling , Sulfites
SELECTION OF CITATIONS
SEARCH DETAIL
...