Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
World J Gastrointest Oncol ; 16(8): 3376-3381, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39171173

ABSTRACT

Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance. Moreover, it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance. Two recent studies titled "Human ß-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506" and "Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription" revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC, respectively. In this editorial, we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.

2.
Huan Jing Ke Xue ; 45(7): 4014-4022, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022949

ABSTRACT

The influences of landscape pattern on water quality are dependent on spatial-temporal scales. However, the effects of landscape composition, landscape configuration, and landscape slope metrics on seasonal water quality at different spatial scales remain unclear. Based on the total nitrogen, total phosphorus, nitrate-N, and ammonium-N data from 26 sampling sites in the Qingshan Lake watershed, this study coupled landscape pattern analysis, redundancy analysis, and partial redundancy analysis to quantify the spatiotemporal scale effects of landscape pattern on riverine nitrogen (N) and phosphorus (P) concentrations. The results showed that: ① The explanatory ability of landscape pattern at the sub-watershed scale on riverine N and P concentrations was 6.8%-8.4% higher than that at the buffer scale, and this effect was more obvious in the dry season. ② At the sub-watershed scale, the percentage of forestland and the interspersion and juxtaposition degree of residential land had a greater influence on riverine N and P concentrations. At the buffer scale, the slope of farmland and residential land and the aggregation degree of forestland patches were the key factors affecting riverine N and P concentrations. ③ The contribution rate of landscape configuration to riverine N and P concentration variations (20.1%-36.5%) was the highest. The sensitivity of the effect of landscape configuration on riverine N and P concentrations to seasonal changes was the highest, and the effect of landscape slope on riverine N and P concentrations had the highest sensitivity to spatial scale changes. Therefore, landscape pattern-regulated non-point source pollution should be considered from a multi-scale perspective. These results can provide scientific basis for the formulation of landscape pattern optimization measures aiming at non-point source pollution control.

SELECTION OF CITATIONS
SEARCH DETAIL