Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1378048, 2024.
Article in English | MEDLINE | ID: mdl-38799426

ABSTRACT

Background: Long-term non-progressors (LTNPs) with HIV infection can naturally control viral replication for up to a decade without antiretroviral therapy (ART), but the underlying mechanisms of this phenomenon remain elusive. Methods: To investigate the relevant immune and inflammatory factors associated with this natural control mechanism, we collected plasma samples from 16 LTNPs, 14 untreated viral progressors (VPs), 17 successfully ART-treated patients (TPs), and 16 healthy controls (HCs). The OLINK immune response panel and inflammation panel were employed to detect critical proteins, and the plasma neutralizing activity against a global panel of pseudoviruses was assessed using TZM-bl cells. Results: The combination of IL17C, IL18, DDX58, and NF2 contributed to discriminating LTNPs and VPs. IL18 and CCL25 were positively associated with CD4+ T cell counts but negatively correlated with viral load. Furthermore, CXCL9 and CXCL10 emerged as potential supplementary diagnostic markers for assessing the efficacy of antiretroviral therapy (ART). Finally, TNFRSF9 displayed positive correlations with neutralization breadth and Geometry Median Titer (GMT) despite the lack of significant differences between LTNPs and VPs. Conclusion: In summary, this study identified a set of biomarkers in HIV-infected individuals at different disease stages. These markers constitute a potential network for immune balance regulation in HIV infection, which is related to the long-term control of HIV by LTNPs. It provides important clues for further exploring the immune regulatory mechanism of HIV.


Subject(s)
Biomarkers , HIV Infections , HIV-1 , Proteomics , Viral Load , Humans , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/blood , HIV-1/immunology , Male , Adult , Proteomics/methods , Female , Biomarkers/blood , Middle Aged , China , CD4 Lymphocyte Count , HIV Long-Term Survivors , Virus Replication/drug effects , East Asian People
2.
Virus Res ; 345: 199377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643858

ABSTRACT

The membrane-proximal external region (MPER) represents a highly conserved region of the Human Immunodeficiency Virus (HIV) envelope glycoprotein (env) targeted by several broadly neutralizing antibodies (bnAbs). In this study, we employed single genome amplification to amplify 34 full-length env sequences from the 2005 plasma sample of CBJC504, a chronic HIV-1 clade B infected individual. We identified three amino acid changes (N671S, D674N, and K677R) in the MPER. A longitudinal analysis revealed that the proportion of env sequences with MPER mutations increased from 26.5 % in 2005 to 56.0 % in 2009, and the sequences with the same mutation clustered together. Nine functional pseudoviruses were generated from the 34 env sequences to examine the effect of these mutations on neutralizing activity. Pseudoviruses carrying N674 or R677 mutations demonstrate increased sensitivity to autologous plasma and monoclonal antibodies 2F5, 4E10, and 10E8. Reverse mutations were performed in env including N674, R677, D659, and S671/N677 mutations, to validate the impact of the mutations on neutralizing sensitivity. Neutralization assays indicated that the N671S mutation increased neutralization sensitivity to 2F5 and 10E8. The amino acid R at position 677 increased viral resistance to 10E8, whereas N enhanced viral resistance to 4E10 and 10E8. It has been proposed that critical amino acids in the extra-MPER and the number of potential N-like glycosylation sites (PNGSs) in the V1 loop may have an impact on neutralizing activity. Understanding the mutations and evolution of MPER in chronically infected patients with HIV-1 is crucial for the design and development of vaccines that trigger bnAbs against MPER.


Subject(s)
Amino Acid Substitution , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Neutralization Tests , env Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/immunology , Antibodies, Neutralizing/immunology , HIV Infections/virology , HIV Infections/immunology , HIV Antibodies/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...