Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998237

ABSTRACT

Interface bonding conditions between concrete and steel materials play key roles in ensuring the composite effect and load-carrying capacity of concrete-steel composite structures such as concrete-filled steel tube (CFST) members in practice. A method using both surface wave and electromechanical impedance (EMI) measurement for detecting the existence and the location of inaccessible interface debonding defects between the concrete core and steel tube in CFST members using piezoelectric lead zirconate titanate (PZT) patches as actuators and sensors is proposed. A rectangular CFST specimen with two artificially mimicked interface debonding defects was experimentally verified using PZT patches as the actuator and sensor. By comparing the surface wave measurement of PZT sensors at different surface wave travelling paths under both a continuous sinusoidal signal and a 10-period sinusoidal windowed signal, three potential interface debonding defects are quickly identified. Furthermore, the accurate locations of the three detected potential interface debonding defects are determined with the help of EMI measurements from a number of additional PZT sensors around the three potential interface debonding defects. Finally, the accuracy of the proposed interface debonding detection method is verified with a destructive observation by removing the local steel tube at the three detected interface debonding locations. The observation results show that the three detected interface debonding defects are two mimicked interface debonding defects, and an unexpected debonding defect occurred spontaneously due to concrete shrinkage in the past one and a half years before conducting the test. Results in this study indicate that the proposed method can be an efficient and accurate approach for the detection of unknown interface debonding defects in existing CFST members.

2.
Drug Dev Ind Pharm ; 47(3): 429-439, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33617404

ABSTRACT

As a natural flavonoid compound, rutin could scavenge free radicals effectively to achieve remarkable antioxidant and anti-photoaging activity. Unfortunately, the extremely low water solubility of rutin often leads to the poor percutaneous permeability and unsatisfactory bioavailability, which has greatly restricted its clinical application. In this study, a novel freeze-dried rutin nanocrystal was developed to improve its saturation solubility, which was further redispersed in carbopol gel to formulate the targeted rutin nanocrystal gel (NC-gel) for enhanced transdermal delivery efficiency. Benefit from the advantages of NC-gel, the permeated amounts of rutin on mice in the NC-gel group was more than three times enhancement over that of the coarse drug gel group. Furthermore, the results of pharmacodynamic studies in vivo demonstrated that NC-gel could effectively prevent the skin photoaging and tissue damage induced by UV irradiation. Taken together, these results validated that NC-gel was an ideal carrier for the epidermal application of rutin to obtain excellent anti-photoaging effect, which further might provide a valuable platform for improving the transdermal bioavailability of insoluble drugs.


Subject(s)
Nanoparticles , Rutin , Administration, Cutaneous , Animals , Biological Availability , Mice , Skin/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...