Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Appl Opt ; 63(11): 2930-2938, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38856391

ABSTRACT

To reduce noise in indoor visible light communication (IVLC), the Pearson correlation coefficient difference (PCCD), a denoising system combining iterative variational mode decomposition (IVMD) and multiple frequency shift keying modulation (MFSK), is proposed. Compared with VMD, the method can directly determine the optimal number of VMD modes and solve the issue of VMD penalty factor selection to some extent. The simulation results show that, when the input SNRs vary from -15 to -8d B, the proposed method can improve the output SNRs of the 2FSK signal by an average of 15.5 dB and reduce the BER by 55.8%, improve the output SNR of the 4FSK signal by an average of 13 dB, and reduce the BER by 54.4%. The proposed method can also effectively suppress noise interference in real IVLC experiments at a distance of 1 m. In addition, the IVMD-MFSK denoising system can be applied to denoise all frequency-modulated signals with high applicability.

2.
ACS Appl Mater Interfaces ; 15(41): 48027-48037, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812497

ABSTRACT

Photosensitizers have emerged as cytotoxic reactive oxygen species (ROS) activators in photodynamic therapy (PDT), which induced cell apoptosis. As the major contributors to ROS and oxidative stress, mitochondria play an important role in cell apoptosis. Although there are many reports about near-infrared 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as photosensitizers (PSs) for PDT, this kind of PS has rarely been used for treating mitochondrial function and choroidal neovascularization application at the same time. Herein, a novel near-infrared PS (BDP2) characterized by good water solubility, long wavelength excitation, and high ROS quantum yield has been made. Under near-infrared light irradiation, BDP2 would generate ROS with high yield, induce a mitochondrial morphology change, and trigger cell apoptosis by changing the fusion protein level. Deep investigation revealed that BDP2 can cause oxidative stress, break the balance between fusion and fission of mitochondrial dynamics protein through decreasing fusion protein MFN2 and OPA1 expression, and finally cause cell apoptosis. Due to these characteristics, the BDP2 PS was used to treat choroidal neovascularization in animal models and can inhibit neovascularization.


Subject(s)
Choroidal Neovascularization , Photochemotherapy , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Mitochondrial Dynamics , Reactive Oxygen Species/metabolism , Mitochondrial Proteins , Choroidal Neovascularization/drug therapy
3.
Curr Med Imaging ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37691210

ABSTRACT

BACKGROUND: The composition of kidney stones is related to the hardness of the stones. Knowing the composition of the stones before surgery can help plan the laser power and operation time of percutaneous nephroscopic surgery. Moreover, patients can be treated with medications if the kidney stone is compounded by uric acid before treatment, which can relieve the patients of the pain of surgery. However, although the literature generally reports the kidney stone composition analysis method base on dual-energy CT images, the accuracy of these methods is not enough; they need manual delineation of the kidney stone location, and these methods cannot analyze mixed composition kidney stones. OBJECTIVE: This study aimed to overcome the problem related to identifying kidney stone composition; we need an accurate method to analyze the composition of kidney stones. METHODS: In this paper, we proposed the automatic kidney stone composition analysis algorithm based on a dual-energy CT image. The algorithm first segmented the kidney stone mask by deep learning model, then analyzed the composition of each stone by machine learning model. RESULTS: The experimental results indicate that the proposed algorithm can segment kidney stones accurately (AUC=0.96) and predict kidney stone composition accurately (mean Acc=0.86, mean Se=0.75, mean Sp=0.9, mean F1=0.75, mean AUC=0.83, MR (Exact match ratio)=0.6). CONCLUSION: The proposed method can predict the composition and location of kidney stones, which can guide its treatment. Experimental results show that the weighting strategy can improve kidney stone segmentation performance. In addition, the multi-label classification model can predict kidney stone composition precisely, including the mixed composition kidney stones.

4.
Opt Express ; 31(15): 25207-25219, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475331

ABSTRACT

We propose, what we believe to be, a novel method for high temperature sensing calibration based on the mechanism of alterable interferential fineness in Bragg hollow core fiber (BHCF). To verify the proof-of-concept, the fabricated sensing structure is sandwiched by two sections with different length of BHCF. Two interferential fineness fringes dominate the transmission spectrum, where the high-fineness fringes formed by anti-resonant reflecting optical waveguide (ARROW) plays the role for high temperature measurement. Meanwhile, the low-fineness fringes induced by short Fabry-Perot (F-P) cavity are exploited as temperature calibration. The experimental results show that the ARROW mechanism-based temperature sensitivity can reach 26.03 pm/°C, and the intrinsic temperature sensitivity of BHCF is 1.02 pm/°C. Here, the relatively lower magnitude of the temperature sensitivity is considered as the standard value since it merely relies on the material properties of silicon. Additionally, a large dynamic temperature range from 100 °C to 800 °C presents linear response of the proposed sensing structure, which may shine the light on the sensing applications in the harsh environment.

5.
Lasers Med Sci ; 38(1): 44, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36656398

ABSTRACT

To compare the safety and efficacy of en bloc resection of non-muscle-invasive bladder cancer (NMIBC) using a 1470-/980-nm dual-wavelength laser (DwLRBT) compared to the gold standard, transurethral resection (TURBT). The study group included 251 patients with a confirmed diagnosis of NMIBC, 97 in the DwLRBT group and 154 in the TURBT group. Clinical characteristics, complications, and recurrence-free survival were compared between the two groups. There were no differences between the two groups with regard to age, sex, mean tumor size, mean tumor number, tumor location, risk, fever, and reoperation. Compared to TURBT, DwLRBT was associated with a shorter hospitalization time (mean±standard deviation: 5.81±1.48 days vs. 4.96±1.32, respectively, p=0.001), shorter catheterization time (4.98±1.47 vs. 4.20±1.48 days, respectively; p=0.035), and smaller volume of intraoperative bleeding (8.43±6.21 ml vs. 6.15±5.08, respectively; p=0.003). Recurrence-free survival (RFS) was better for DwLRBT than TURBT in the overall cohort (hazard ratio [HR], 0.4323; 95% confidence interval [CI], 0.2852-0.6554; p=0.0004) and for the following subgroups and tumor types: intermediate-risk (HR, 0.2654; 95%CI, 0.1020-0.6904; p=0.0245) and high-risk (HR, 0.4461; 95% CI, 0.2778-0.7162; p=0.0027) groups; and for pedunculate bladder tumors (HR, 0.4158; 95%CI, 0.2401-0.7202; p=0.0063), single bladder tumors (HR, 0.4136; 95%CI, 0.2376-0.7293; p=0.0072), and multiple bladder tumors (HR, 0.2727; 95%CI, 0.1408-0.5282; p=0.0014). DwLRBT is associated with better operative and postoperative outcomes, including, importantly, a longer RFS, compared to TURBT.


Subject(s)
Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Humans , Retrospective Studies , Transurethral Resection of Bladder , Urinary Bladder Neoplasms/surgery , Urinary Bladder Neoplasms/pathology , Lasers , Neoplasm Recurrence, Local/pathology , Neoplasm Invasiveness
6.
J Phys Chem Lett ; 13(48): 11086-11094, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36417755

ABSTRACT

We investigate dynamic signatures of the singlet fission (SF) process triggered by the excitation of a molecular system to an upper singlet state SN (N > 1) and develop a computational methodology for the simulation of nonlinear spectroscopic signals revealing the SN → TT1 SF in real time. We demonstrate that SF can proceed directly from the upper state SN, bypassing the lowest excited state, S1. We determine the main SN → TT1 reaction pathways and show by computer simulation and spectroscopic measurements that the SN-initiated SF can be faster and more efficient than the traditionally studied S1 → TT1 SF. We claim that the SN → TT1 SF offers novel promising opportunities for engineering SF systems and enhancing SF yields.

7.
Opt Express ; 30(21): 37526-37535, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258340

ABSTRACT

Ultrahigh-order optical orbital angular momentum (OAM) states of the identification over ±270 orders are implemented by annular phase grating (APG) and Gaussian beams with different wavelengths. Particularly, the far-field diffraction intensity patterns feature the spiral stripes instead of Hermitian-Gaussian (HG)-like fringes. It's worth noting that the spiral stripes present uniform distribution, thus the order of OAM states can be intuitively acquired. More specifically, the OAM states can be confirmed from the total amount and rotating direction of the spiral stripes. Compared with traditional methods, the propose scheme contributes to the perfect-distributed and sharper spiral stripes. Moreover, it also makes an easier observation of the patterns in the CCD camera with limited imaging targets. In our experimental setup, the optical filter is removed and the APG parameters are not strictly required. Therefore, the propose optical transmission system is equipped with the advantages of efficiency, robustness and low cost, which paves a promising way for the communication capacity enhancement.

8.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014308

ABSTRACT

The ultrafast dynamics of triplet excitons and polarons in hexaphenyl film was investigated by time-resolved fluorescence and femtosecond transient absorption techniques under various excitation photon energies. Two distinct pathways of triplet formation were clearly observed. Long-lived triplet states are populated within 4.5 ps via singlet fission-intersystem crossing, while the short-lived triplet states (1.5 ns) are generated via singlet fission from vibrational electronic states. In the meantime, polarons were formed from hot excitons on a timescale of <30 fs and recombined in ultrafast lifetime (0.37 ps). In addition, the characterization of hexaphenyl film suggests the morphologies of crystal and aggregate to wide applications in organic electronic devices. The present study provides a universally applicable film fabrication in hexaphenyl system towards future singlet fission-based solar cells.

9.
J Biomed Nanotechnol ; 18(2): 327-342, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35484753

ABSTRACT

The most common type of kidney tumor, clear-cell renal cell carcinoma (ccRCC) with relatively insidious development and easily metastatic characteristics is generally insensitive to cytotoxic chemotherapy. The abundant polyunsaturated fatty acids (PUFAs) content in advanced ccRCC allows it to be intrinsically vulnerable to ferroptosis-based therapeutic strategies. Nevertheless, the strategy to cause the "iron overload" by administration with iron-based nanomaterials has limited therapeutic efficacy. And the classic ferroptosis agonist (RSL3) with low specificity for tumors, short half-life in the blood, poor water solubility and deficient accumulation at the tumor site prevents its reliable application in vivo. In this study, iron-based metal-organic framework nanoparticles (MIL-101(Fe) NPs) delivered RSL3 to ccRCC tumors, and then released the iron ions and RSL3 accompanied by the degradation of MIL-101(Fe) NPs in the acidic tumor microenvironment. The MIL-101(Fe)@RSL3 as a pH-responsive nanodrug causes cellular iron overload and promotes the hydroxyl radical (•OH) generation by Fenton reaction to attack PUFAs, leading to the aberrant accumulation of lipid peroxides (L-OOH). Additionally, RSL3 directly inhibits glutathione peroxidase 4 (GPX4) to detoxify L-OOH, and ferrous ions further catalyze the irreversible conversion of highly reactive lipid alkoxyl radicals (L-O•) from L-OOH to triggering waterfall-like cascade ferroptosis. In contrast to the limited antitumor efficiency of free RSL3, MIL-101(Fe)@RSL3 with high encapsulation efficiency (88.7%) shows a significant ccRCC-specific antitumor effect and negligible side effects. Taken together, MIL-101(Fe)@RSL3 could aggravate ferroptosis and be expected to be a promising nanodrug for ccRCC systemic therapy due to the targeted delivery and responsive release of RSL3 and iron ions.


Subject(s)
Carcinoma, Renal Cell , Ferroptosis , Kidney Neoplasms , Nanoparticles , Carcinoma, Renal Cell/drug therapy , Female , Humans , Iron/metabolism , Kidney Neoplasms/drug therapy , Male , Nanoparticles/therapeutic use , Phospholipid Hydroperoxide Glutathione Peroxidase , Tumor Microenvironment
10.
Front Cardiovasc Med ; 9: 758324, 2022.
Article in English | MEDLINE | ID: mdl-35252376

ABSTRACT

BACKGROUND AND AIMS: With the increasing coexistence of cardiovascular disease and cancer in contemporary clinical practice, studies on the outcomes in acute myocardial infarction (AMI) patients with cancer has not been systematically investigated. This study sought to investigated the effect of coexisting cancer on the treatment and clinical outcomes among AMI patients. METHODS: We retrospectively integrated and analyzed cardiovascular data of 6,607 AMI patients between June 2016 and December 2019. Patients with cancer were compared with pair-matched cancer-naive patients. Cox proportional hazards models were constructed to compare the differences in outcomes. RESULTS: Of 6,607 patients, 2.3% (n = 150) had been diagnosed with cancer. Patients with cancer were older (70.3 ± 10.0 vs. 63.9 ± 11.5 years, P < 0.001) and had a higher burden of comorbidities. Moreover, patients with cancer tended to receive clopidogrel (52.0 vs. 40.0%, P = 0.004) rather than ticagrelor (45.6 vs. 58.2%, P = 0.003) than those without cancer. After pairwise matching, patients with cancer were less likely to undergo in-hospital percutaneous coronary intervention (61.3 vs. 70.0%, P = 0.055). And after 3-year follow-up, the cumulative incidence of cardiovascular death (14.0 vs. 8.3%; adjusted HR, 1.93; 95% CI, 1.11-3.39; P = 0.021) among patients with cancer was significantly higher than that among the matched controls, a similar pattern was observed for the composite outcome of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke (16.0 vs. 10.3%; adjusted HR, 1.98; 95% CI, 1.21-3.26; P = 0.007). Moreover, patients with a historical cancer diagnosis within 5 years had a higher risk of cardiovascular ischemic events. CONCLUSIONS: AMI patients with a concomitant diagnosis of cancer tended to be treated with conservative therapies and were at substantially higher risk for adverse cardiovascular outcomes.

11.
Biomed Res Int ; 2022: 3924400, 2022.
Article in English | MEDLINE | ID: mdl-35252444

ABSTRACT

BACKGROUND: The role of HERV-H LTR-associating 2 (HHLA2) in cancer remains still unclear. This study analyzed the correlation between the prognosis and immune infiltrate function of HHLA2 in pan-cancers. METHODS: HHLA2 expression in pan-cancers was analyzed using the databases of TCGA, GTEx, TIMER, GEPIA, UALCAN, and GSEA databases. Multiple bioinformatic methods were used to investigate the correlation of HHLA2 expression with survival, pathological stage, tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), immune cell infiltration, and immune checkpoint gene (ICG), and gene functional enrichment was performed by Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). RESULTS: HHLA2 was aberrantly expressed and was strongly correlated with positive or negative prognosis in multiple human cancers, which revealed that HHLA2 might play a vital role during cancer formation and development. Kaplan-Meier (KM) curves across cancers revealed that HHLA2 expression was correlated with overall survival (OS) in eight cancers, disease-specific survival (DSS) in seven cancers, disease-free interval (DFI) in four cancers, and progression-free interval (PFI) in nine cancers. Furthermore, HHLA2 expression was positively correlated with TMB in 6 cancer types and negatively associated with TMB in 7 cancer types, respectively. The former included ESCA, HNSC, KIRP, PAAD, PRAD, and PCPG; the latter contained COAD, LGG, LUAD, LUSC, THYM, THCA, and UCEC. Additionally, we found HHLA2 expression was negatively related to MSI in ACC, COAD, PAAD, and UCEC. More importantly, HHLA2 expression was remarkably correlated with the degree of tumor-infiltrating immune in many cancers, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells and strongly associated with immune checkpoint genes in 13 tumor types. Furthermore, KEGG pathway analyses indicated that HHLA2 could potentially impact cancer etiology or pathogenesis by functioning in amino sugar and nucleotide sugar metabolism, cytosolic DNA sensing pathway, and peroxisome pathways. Meanwhile, GSVA analysis results all indicate that HHLA2 was correlated with TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, EMT, DNA Damage Response, Cell Cycle, and Apoptosis pathways in various cancers. CONCLUSION: HHLA2 can function as a prognostic biomarker and correlate with tumor immunity in human pan-cancer due to its important role in tumorigenesis and immune infiltration, which provides new insight into developing new targeted treatments in cancers.


Subject(s)
Endogenous Retroviruses , Neoplasms , Pulmonary Disease, Chronic Obstructive , Biomarkers, Tumor/genetics , Humans , Immunoglobulins/genetics , Microsatellite Instability , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Pulmonary Disease, Chronic Obstructive/genetics , Tumor Microenvironment/genetics
12.
Adv Mater ; 34(14): e2109330, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35112406

ABSTRACT

Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO2 activation-barrier. However, the hot electron-driven CO2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W18 O49 nanowires on the outer surface of Au nanoparticles-embedded TiO2 electrospun nanofibers are assembled to obtain lots of Au/TiO2 /W18 O49 sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W18 O49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO2 /W18 O49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO2 /W18 O49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH4 and CO production-rates at ≈35.55 and ≈2.57 µmol g-1 h-1 , respectively, and the CH4 -product selectivity at ≈93.3%.

13.
Chemphyschem ; 23(8): e202100912, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35191573

ABSTRACT

Attaching stable radicals to organic chromophores is an effective method to enhance the intersystem crossing (ISC) of the chromophores. Herein we prepared perylene-oxoverdazyl dyads either by directly connecting the two units or using an intervening phenyl spacer. We investigated the effect of the radical on the photophysical properties of perylene and observed strong fluorescence quenching due to radical enhanced ISC (REISC). Compared with a previously reported perylene-fused nitroxide radical compound (triplet lifetime, τT =0.1 µs), these new adducts show a longer-lived triplet excited state (τT =9.5 µs). Based on the singlet oxygen quantum yield (ΦΔ =7 %) and study of the triplet state, we propose that the radical enhanced internal conversion also plays a role in the relaxation of the excited state. Femtosecond fluorescence up-conversion indicates a fast decay of the excited state (<1.0 ps), suggesting a strong spin-spin exchange interaction between the two units. Femtosecond transient absorption (fs-TA) spectra confirmed direct triplet state population (within 0.5 ps). Interestingly, by fs-TA spectra, we observed the interconversion of the two states (D1 ↔Q1 ) at ∼80 ps time scale. Time-resolved electron paramagnetic resonance (TREPR) spectral study confirmed the formation of the quartet sate. We observed triplet and quartet states simultaneously with weights of 0.7 and 0.3, respectively. This is attributed to two different conformations of the molecule at excited state. DFT computations showed that the interaction between the radical and the chromophore is ferromagnetic (J>0, 0.05∼0.10 eV).


Subject(s)
Perylene , Electron Spin Resonance Spectroscopy , Molecular Conformation , Singlet Oxygen/chemistry
14.
Front Microbiol ; 12: 729952, 2021.
Article in English | MEDLINE | ID: mdl-34867846

ABSTRACT

New Delhi metallo-ß-lactamases (NDMs), including at least 28 variants, are a rapidly emerging family of ß-lactamases worldwide, with a variety of infections caused by NDM-positive strains usually associated with very poor prognosis and high mortality. NDMs are the most prevalent carbapenemases in Escherichia coli (E. coli) worldwide, especially in China. The vast majority of bla NDM cases occur on plasmids, which play a vital role in the dissemination of bla NDM. To systematically explore the relationships between plasmids and bla NDM genes in E. coli and obtain an overall picture of the conjugative and mobilizable bla NDM-positive plasmids, we analyzed the variants of bla NDM, replicon types, phylogenetic patterns, conjugative transfer modules, host STs, and geographical distributions of 114 bla NDM-positive plasmids, which were selected from 3786 plasmids from 1346 complete whole genomes of E. coli from the GenBank database. We also established links among the characteristics of bla NDM-positive plasmids in E. coli. Eight variants of bla NDM were found among the 114 bla NDM-positive plasmids, with bla NDM - 5 (74 bla NDM - 5 genes in 73 plasmids), and bla NDM - 1 (31 bla NDM - 1 genes in 28 plasmids) being the most dominant. The variant bla NDM - 5 was mainly carried by the IncX3 plasmids and IncF plasmids in E. coli, the former were mainly geographically distributed in East Asia (especially in China) and the United States, and the latter were widely distributed worldwide. IncC plasmids were observed to be the predominant carriers of bla NDM - 1 genes in E. coli, which were mainly geographically distributed in the United States and China. Other bla NDM - 1-carrying plasmids also included IncM2, IncN2, and IncHI1. Moreover, the overall picture of the conjugative and mobilizable bla NDM-positive plasmids in E. coli was described in our study. Our findings enhance our understanding of the genetic diversity and characteristics of bla NDM-positive plasmids in in E. coli.

15.
Front Bioeng Biotechnol ; 9: 800744, 2021.
Article in English | MEDLINE | ID: mdl-34926438

ABSTRACT

Multimodality imaging can reveal complementary anatomic and functional information as they exploit different contrast mechanisms, which has broad clinical applications and promises to improve the accuracy of tumor diagnosis. Accordingly, to attain the particular goal, it is critical to exploit multimodal contrast agents. In the present work, we develop novel cobalt core/carbon shell-based nanoparticles (Cobalt at carbon NPs) with both magnetization and light absorption properties for dual-modality magnetic resonance imaging (MRI) and photoacoustic imaging (PAI). The nanoparticle consists of ferromagnetic cobalt particles coated with carbon for biocompatibility and optical absorption. In addition, the prepared Cobalt at carbon NPs are characterized by transmission electron microscope (TEM), visible-near-infrared spectra, Raman spectrum, and X-ray powder diffraction for structural analysis. Experiments verify that Cobalt at carbon NPs have been successfully constructed and the designed Cobalt at carbon NPs can be detected by both MRI and PAI in vitro and in vivo. Importantly, intravenous injection of Cobalt at carbon NPs into glioblastoma-bearing mice led to accumulation and retention of Cobalt at carbon NPs in the tumors. Using such a multifunctional probe, MRI can screen rapidly to identify potential lesion locations, whereas PAI can provide high-resolution morphological structure and quantitative information of the tumor. The Cobalt at carbon NPs are likely to become a promising candidate for dual-modality MRI/PAI of the tumor.

16.
J Phys Chem B ; 125(45): 12518-12527, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34752093

ABSTRACT

With the aim of constructing efficient photoelectric organic materials, a pyrido[3,2-g]quinoline derivative named LA17b has been synthesized, and its photodynamic relaxation processes in solvents and films were studied by time-resolved fluorescence and femtosecond transient absorption techniques. The steady-state fluorescence spectra show pronounced red-shift with the increase of the solvent polarity as well as in binary solvent hexane/ethanol by increasing ethanol concentration. However, the strong red-shift does not lead to quenching of the fluorescence. This is explained in terms of a twisted intramolecular charge transfer (TICT) state. The TICT state of LA17b in ethanol is highly emissive with a long fluorescence lifetime: 1.1 ns. TICT state was shown to play an important role in enhancement of intersystem crossing rate. TD-DFT calculations confirm the pathways of relaxation of locally excited state via TICT and triplet states. In films, the photodynamic properties are similar to that of LA17b in hexane and the TICT state vanishes due to the rigid environment. The obtained optical properties of this molecule suggest that it can be a promising candidate for various optoelectronic applications.


Subject(s)
Ethanol , Density Functional Theory , Solvents , Spectrometry, Fluorescence
17.
Nanoscale ; 13(47): 20126-20133, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34846403

ABSTRACT

Two-dimensional transition metal dichalcogenides have attracted a great deal of attention in the past few decades owing to their attractive optoelectronic properties. However, their widespread utility in photonic devices and components is still limited owing to their weak photoluminescence. While various treating methods are in place to improve the photoluminescence yield, the impact of these treatments on the excited state (especially exciton) dynamics in these two-dimensional materials remains ill defined. In this work, exciton dynamics in pristine and oleic acid-treated monolayer WS2 were comprehensively studied through various ultrafast experimental techniques. We demonstrate that oleic acid effectively passivates the defect states in as-fabricated WS2, resulting in trap-free exciton dynamics and exciton annihilation rate reduction, which leads to stronger steady-state photoluminescence and longer photoluminescence lifetime. These results provide valuable information on the intrinsic exciton dynamics in monolayer WS2, which could also be applicable in other two-dimensional transition metal dichalcogenides and help improve optoelectronic device performance.

18.
J Chem Phys ; 155(19): 191102, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800965

ABSTRACT

A long 0.9 ps lifetime of the upper excited singlet state in perylene is resolved by femtosecond pump-probe measurements under ultraviolet (4.96 eV) excitation and further validated by theoretical simulations of transient absorption kinetics. This finding prompts exploration and development of novel perylene-based materials for upper excited state photochemistry applications.

19.
Sci Rep ; 11(1): 5220, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33664304

ABSTRACT

Singlet exciton fission (SF) is a spin-allowed process whereby two triplet excitons are created from one singlet exciton. This phenomenon can offset UV photon energy losses and enhance the overall efficiency in photovoltaic devices. For this purpose, it requires photostable commercially available SF materials. Excited state dynamics in pure perylene film, ease of commercial production, is studied by time-resolved fluorescence and femtosecond transient absorption techniques under different photoexcitation energies. In film, polycrystalline regions contain perylene in H-type aggregate form. SF takes place from higher excited states of these aggregates in ultrafast time scale < 30 fs, reaching a triplet formation quantum yield of 108%. Moreover, at λex = 450 nm singlet fission was detected as a result of two-quantum absorption. Other competing relaxation channels are excimer (1 ps) and dimer radical cation formation (< 30 fs). Excimer radiatively relaxes within 19 ns and radical cation recombines in 3.2 ns. Besides, exciton self-trapping by crystal lattice distortions occurs within hundreds of picosecond. Our results highlight potential of simple-fabricated perylene films with similar properties as high-cost single crystal in SF based photovoltaic applications.

20.
Front Genet ; 12: 579900, 2021.
Article in English | MEDLINE | ID: mdl-33613629

ABSTRACT

Bladder cancer is one of the most common urogenital malignancies in the world, and there are no adequate prognostic indicators. CNTD2 is one of the atypical cyclins, which may be related to the cell cycle and even the development of cancers. Early studies have shown that CNTD2 is closely related to the occurrence and development of many malignant tumors. However, the mechanism of CNTD2 in bladder cancer has not been reported. In our research, we explored the different expressions of CNTD2 between 411 bladder cancers and 19 normal bladder tissues based on the TCGA dataset. CNTD2-related signaling pathways were identified through the GSEA. We analyzed the associations of CNTD2 expression and bladder cancer progression and survival using GSE13507. Compared with 19 cases of normal bladder tissue, CNTD2 gene expression was increased in 411 cases of bladder cancer. The high expression of CNTD2 strongly correlated with grade (P < 0.0001), T classification (P = 0.0001), N classification (P = 0.00011), M classification (P = 0.044), age (P = 0.027), and gender (P = 0.0012). Bladder cancer patients with high CNTD2 expression had shorter overall survival (P < 0.001). In the meantime, univariate and multivariate analyses showed that the increased expression of CNTD2 was an independent factor for poor prognosis in bladder cancer patients (P < 0.001 and P < 0.001, respectively). CNTD2 expression is closely related to bladder cancer progression, and the high expression of CNTD2 may be an adverse biomarker in bladder cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...