Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(49): 22778-22786, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36469524

ABSTRACT

The ability to design and control the chemical characteristics of covalent organic frameworks (COFs) offers a new avenue for the development of functional materials, especially with respect to topological properties. Based on density functional theory calculations, by varying the core units through the choice of bridging groups [O, C═O, CH2, or C(CH3)2] and the linker units [acetylene, diacetylene, or benzene], we have designed heterotriangulene-based COFs that are predicted to be two-dimensional higher-order topological insulators (TIs). The higher-order TI characteristics of these COFs are identified via their topological invariants and the presence of in-gap topological corner modes and gapped edge states. The frontier molecular orbital energies of the building moieties play an important role in determining the size of the higher-order TI gap, which we find to be highly dependent on linker units. We also examined the deposition of the COFs on a boron nitride substrate to assess the feasibility of experimental observation of a higher-order TI phase in the organic layer. This work thus provides new insights into heterotriangulene-based COFs and guidance for the exploration of purely organic topological materials.

2.
J Phys Condens Matter ; 34(29)2022 May 16.
Article in English | MEDLINE | ID: mdl-35483349

ABSTRACT

While organic self-assembled monolayers (SAMs) have been widely used to modify the work function of metal and metal-oxide surfaces, their application to tune the critical temperature of a superconductor has only been considered recently when SAMs were deposited on NbSe2monolayers (Calavalle et al 2021Nano Lett.21136-143). Here, we describe the results of density functional theory calculations performed on the experimentally reported organic/NbSe2systems. Our objectives are: (i) to determine how the organic layers impact the NbSe2work function and electronic density of states; (ii) to understand the possible correlation with the experimental variations in superconducting behavior upon SAM deposition. We find that, upon adsorption of the organic monolayers, the work-function modulation induced by the SAM and interface dipoles is consistent with the experimental results. However, there occurs no significant difference in the electronic density of states near the Fermi level, a consequence of the absence of any charge transfer across the organic/NbSe2interfaces. Therefore, our results indicate that it is not a SAM-induced tuning of the NbSe2density of states near the Fermi level that leads to the tuning of the superconducting critical temperature. This calls for further explorations, both experimentally and theoretically, of the mechanism underlying the superconducting critical temperature variation upon formation of SAM/NbSe2interfaces.

3.
Mater Horiz ; 9(1): 88-98, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34866138

ABSTRACT

Two-dimensional covalent organic frameworks (2D-COFs), also referred to as 2D polymer networks, display unusual electronic-structure characteristics, which can significantly enrich and broaden the fields of electronics and spintronics. In this Focus article, our objective is to lay the groundwork for the conceptual description of the fundamental relationships among the COF electronic structures, the symmetries of their 2D lattices, and the frontier molecular orbitals (MOs) of their core and linker components. We focus on monolayers of hexagonal COFs and use tight-binding model analyses to highlight the critical role of the frontier-MO symmetry, in addition to lattice symmetry, in determining the nature of the electronic bands near the Fermi level. We rationalize the intriguing feature that, when the core unit has degenerate highest occupied MOs [or lowest unoccupied MOs], the COF highest valence band [or lowest conduction band] is flat but degenerate with a dispersive band at a high-symmetry point of the Brillouin zone; the consequences of having such band characteristics are briefly described. Multi-layer and bulk 2D COFs are found to maintain the salient features of the monolayer electronic structures albeit with a reduced bandgap due to the interlayer coupling. This Focus article is thus meant to provide an effective framework for the engineering of flat and Dirac bands in 2D polymer networks.

4.
Acc Chem Res ; 54(2): 416-426, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33400497

ABSTRACT

ConspectusMetal-organic and covalent-organic frameworks (MOFs/COFs) have been extensively studied for fundamental interests and their promising applications, taking advantage of their unique structural properties, i.e., high porosity and large surface-to-volume ratio. However, their electronic and magnetic properties have been somewhat overlooked because of their relatively poor performance as conductive and/or magnetic materials. Recent experimental breakthroughs in synthesizing two-dimensional (2D) π-conjugated MOFs/COFs with high conductivity and robust magnetism through doping have generated renewed and increasing interest in their electronic properties. Meanwhile, comprehensive theoretical studies of the underlying physical principles have led to discovery of many exotic quantum states, such as topological insulating states, which were only observed in inorganic systems. Especially, the diversity and high tunability of MOFs/COFs have provided a playground to explore novel quantum physics and quantum chemistry as well as promising applications.The band theory has empowered us to understand the most fundamental electronic properties of inorganic crystalline materials, which can also be used to better understand MOFs/COFs. The first obvious difference between the two is that instead of atomic orbitals residing at lattice sites of inorganic crystals, molecular orbitals of organic ligands are predominant in MOFs/COFs. The second key difference is that usually all atomic orbitals in an inorganic crystal are subject to one common group of lattice symmetry, while atomic orbitals of metal ion and molecular orbitals of different organic ligands in MOFs/COFs belong to different subgroups of lattice symmetries. Both these differences will impact the band structure of MOFs/COFs, in particular making it more complex. Consequently, which subset of bands are of most importance depends strongly on the location of Fermi level, i.e., electron counting and charge doping. Furthermore, there are usually two types of characteristic electrons coupled in MOFs, i.e., strongly correlated localized d and f electrons and diffusive s and p electrons, which interplay with lattice, orbital, and spin degrees of freedom, leading to more exotic topological and magnetic band structures.In this Account, we present an up-to-date review of recent theoretical developments to better understand the exotic band structures of MOFs/COFs. Starting from three fundamental 2D lattice models, i.e., honeycomb, Kagome, and Lieb lattices, exotic Dirac and flat bands as well as the intriguing topological quantum states they host, e.g., quantum spin Hall and quantum anomalous Hall states, are outlined. In addition to the single-lattice models, we further elaborate on combined lattice model Hamiltonians, which give rise to overlapping bands hosting novel quantum states, such as nodal-line Dirac semimetal and unconventional superconducting states. Also, first-principles predictions of candidate MOFs/COFs that host these exotic bands and hence quantum phases are reviewed, which greatly extends the pool of materials beyond inorganic crystals for hosting exotic band structures.

5.
Phys Chem Chem Phys ; 22(44): 25827-25832, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33150895

ABSTRACT

π-Orbital bonding plays an important role not only in traditional molecular science and solid-state chemistry but also in modern quantum physics and materials, such as the relativistic Dirac states formed by bonding and antibonding π-bands in graphene. Here, we disclose an interesting manifestation of π-orbitals in forming the Yin-Yang Kagome bands, which host potentially a range of exotic quantum phenomena. Based on first-principles calculations and tight-binding orbital analyses, we show that the frontier π2- and π3-orbitals in anilato-based metal-organic frameworks form concurrently a conduction and valence set of Kagome bands, respectively, but with opposite signs of lattice hopping to constitute a pair of enantiomorphic Yin and Yang Kagome bands, as recently proposed in a diatomic Kagome lattice. The twisted configuration of neighboring benzene-derived organic ligands bridged by an octahedrally O-coordinated metal ion is found to play a critical role in creating the opposite sign of lattice hopping for the π2- versus π3-orbitals. Our finding affords a new material platform to study π-orbital originated quantum chemistry and physics.

6.
ACS Nano ; 14(8): 10370-10375, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32678570

ABSTRACT

The recent convergence of chiral molecules with metal halide perovskite frameworks gives rise to an interesting family of chiral systems: two-dimensional, chiral hybrid organic-inorganic perovskites (chiral-HOIPs). While possessing photovoltaic properties of traditional HOIPs, this class of materials is endowed with chirality through its organic ligands in which the degeneracy of the electron spin in charge transport is broken. That is, the chirality-induced spin selectivity (CISS) effect manifests, making it a promising platform to bridge opto-spintronic studies and the CISS effect. In this work, chiral-HOIP/NiFe heterostructures are studied by means of the magneto-optical Kerr effect using a Sagnac interferometer. Upon illumination of the chiral-HOIPs, the Kerr signal at the chiral-HOIP/NiFe interface changes, and a linear dependence of the response on the magnetic field is observed. The sign of the slope was found to depend on the chirality of the HOIPs. The results demonstrate the utility of chiral-HOIP materials for chiral opto-spintronic applications.

7.
Nanotechnology ; 30(18): 185302, 2019 May 03.
Article in English | MEDLINE | ID: mdl-30673633

ABSTRACT

A three-dimensional (3D) continuum percolation model has been developed on the basis of Monte Carlo simulation to investigate the percolation behavior of an electrically insulating matrix reinforced with multiple conductive fillers of different dimensionalities. Impenetrable fillers of large aspect ratio are found to preferentially align with each other to maximize the packing entropy rather than forming randomly oriented clusters. This entropy-driven transition from isotropic to nematic phase is shown to critically affect the percolation threshold. It suggests that an isotropic phase with a smaller nematic order parameter leads to a reduction in percolation threshold. In addition, a combination of two fillers with different dimensionalities can achieve a working concentration below the percolation threshold of single component system, which is further validated by the experiments of electrical conductivity in multicomponent multidimensional nanocarbon composites.

8.
Sci Rep ; 8(1): 18075, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30584263

ABSTRACT

We report polarization dependent photoluminescence studies on unintentionally-, Mg-, and Ca-doped ß-Ga2O3 bulk crystals grown by the Czochralski method. In particular, we observe a wavelength shift of the highest-energy UV emission which is dependent on the pump photon energy and polarization. For 240 nm (5.17 eV) excitation almost no shift of the UV emission is observed between E||b and E||c, while a shift of the UV emission centroid is clearly observed for 266 nm (4.66 eV), a photon energy lying between the band absorption onsets for the two polarizations. These results are consistent with UV emission originating from transitions between conduction band electrons and two differentially-populated self-trapped hole (STH) states. Calcuations based on hybrid and self-interaction-corrected density functional theories further validate that the polarization dependence is consistent with the relative stability of two STHs. This observation implies that the STHs form primarily at the oxygen atoms involved in the original photon absorption event, thus providing the connection between incident polarization and emission wavelength. The data imposes a lower bound on the energy separation between the self-trapped hole states of ~70-160 meV, which is supported by the calculations.

9.
Phys Rev Lett ; 121(6): 066401, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141639

ABSTRACT

We theoretically demonstrate that screw dislocation (SD), a 1D topological defect widely present in semiconductors, exhibits ubiquitously a new form of spin-orbit coupling (SOC) effect. Differing from the widely known conventional 2D Rashba-Dresselhaus (RD) SOC effect that typically exists at surfaces or interfaces, the deep-level nature of SD-SOC states in semiconductors readily makes it an ideal SOC. Remarkably, the spin texture of 1D SD-SOC, pertaining to the inherent symmetry of SD, exhibits a significantly higher degree of spin coherency than the 2D RD-SOC. Moreover, the 1D SD-SOC can be tuned by ionicity in compound semiconductors to ideally suppress spin relaxation, as demonstrated by comparative first-principles calculations of SDs in Si/Ge, GaAs, and SiC. Our findings therefore open a new door to manipulating spin transport in semiconductors by taking advantage of an otherwise detrimental topological defect.

10.
Nanoscale ; 10(35): 16759-16764, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30156239

ABSTRACT

A thickness dependent band gap is commonly found in layered two-dimensional (2D) materials. Here, using a C3N bilayer as a prototypical model, we systematically investigated the evolution of a band gap from a single layer to a bilayer using first principles calculations and tight binding modeling. We show that in addition to the widely known effect of interlayer hopping, de-charge transfer also plays an important role in tuning the band gap. The de-charge transfer is defined with reference to the charge states of atoms in the single layer without stacking, which shifts the energy level and modifies the band gap. Together with band edge splitting induced by the interlayer hopping, the energy level shifting caused by the de-charge transfer determines the size of the band gap in bilayer C3N. Our finding, applicable to other 2D semiconductors, provides an alternative approach for realizing band gap engineering in 2D materials.

11.
Nanoscale ; 10(25): 11901-11906, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29897371

ABSTRACT

Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

12.
Nanotechnology ; 29(7): 075401, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29227967

ABSTRACT

We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff's current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.

13.
Chem Sci ; 8(12): 8078-8085, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29568456

ABSTRACT

A π-conjugated coordination nanosheet comprising bis(aminothiolato)nickel (NiAT) moieties was synthesized by the reaction of Ni(acac)2 with 1,3,5-triaminobenzene-2,4,6-trithiol at liquid-liquid and gas-liquid interfaces. The sheet thickness could be controlled down to a single layer (0.6 nm). Selected area electron diffraction and grazing incidence X-ray diffraction analyses indicated the formation of a flat crystalline sheet with a kagome lattice stacked in a staggered alignment. NiAT was reversibly interconverted to a bis(iminothiolato)nickel (NiIT) nanosheet by the chemical 2H+-2e- reaction, which was accompanied by a drastic change in electrical conductivity from 3 × 10-6 to 1 × 10-1 S cm-1. This change in conductivity was explained by the difference in band structures between NiAT and NiIT. NiAT acted as an efficient electrocatalyst for the hydrogen evolution reaction, showing strong acid durability and an onset overpotential of -0.15 V.

14.
Nanotechnology ; 26(46): 464001, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26511198

ABSTRACT

The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 µF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

15.
Chem Commun (Camb) ; 47(38): 10716-8, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21879143

ABSTRACT

The structure evolution of twinned Ru nanoparticles supported on carbon nanotubes rearranging into Ru single nanocrystals under the microwave irradiation and the exposed surface of Ru single crystals were observed, which provided new insights into synthesis and application of metal nanoparticle catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...