Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Virol Methods ; 316: 114730, 2023 06.
Article in English | MEDLINE | ID: mdl-37031744

ABSTRACT

Multiple infections of various viruses and viroids in apple trees are common and have caused a significant loss in the world apple industry. To provide an early detection of any of those possible pathogens at the molecular level, a multiplex DNA macroarray chip was designed and developed for a simultaneous identification of five common apple viruses and two viroids including apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple mosaic virus (ApMV), apple necrosis mosaic virus (ApNMV), apple scar skin viroid (ASSVd), and apple dimple fruit viroid (ADFVd). The macroarray with a 23 bp probe arranged with the coat protein (CP) gene or a target DNA segment of each viruses and viroids has demonstrated a high specificity and sensitivity without any competitions, inhibitions or cross-interferences when it was tested against more than a mixture of viral and viroid samples. To our best knowledge, this is the first report on the simultaneous detection of five different apple viruses and two viroids through using a DNA macroarray, therefore, we suggest that this detection protocol and procedure be used for any apple viral diagnosis before setting up a production nursery for virus-free apple seedlings.


Subject(s)
Viroids , Viroids/genetics
2.
World J Clin Cases ; 9(33): 10151-10160, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34904085

ABSTRACT

BACKGROUND: Enhanced recovery after surgery (ERAS) was introduced in China in 2007. Over time, the scope of ERAS has expanded from abdominal surgery to orthopedics, urology and other fields. Continuous development and research has contributed to progress of ERAS in China. In 2019, to promote the application of ERAS in bone tumor surgery, we formed the "Consensus of Experts on Perioperative Management of Accelerated Rehabilitation in Major Surgery of Bone Tumors in China". AIM: To evaluate the effect of enhanced recovery after bone tumor surgery in perioperative management in China. METHODS: One hundred and seven patients who underwent bone tumor surgery at the Second Affiliated Hospital of Xi'an Jiaotong University between May 2019 and April 2021 were randomized into a study group (53 cases) and a control group (54 cases). The study group adopted the ERAS protocol and the control group adopted conventional care. Main outcome measures included postoperative length of stay (LOS), postoperative complications, mortality, and 30-d readmission rates. Secondary outcomes included postoperative visual analog scale (VAS) score of pain, number of blood transfusions, drainage volume in 24 h after operation, patient satisfaction 30 d after discharge, VAS score at 30 d after discharge, and daily standing walking time. RESULTS: There were no significant differences in the baseline data, clinical features and surgical site between the two groups. The LOS in the study group with the ERAS protocol was 7.72 ± 3.34 d compared with 10.28 ± 4.27 d in the control group who followed conventional care. The incidence of postoperative nausea and vomiting (PONV) in the study group was 19% and 37% in the control group. The VAS scores of pain on postoperative day 1 (POD1) and POD3 in the study group were 4.79 ± 2.34 and 2.79 ± 1.53 compared with 5.28 ± 3.27 and 3.98 ± 2.27 in the control group. The drainage volume in 24 h after the operation was 124.36 ± 23.43 mL in the study group and 167.43 ± 30.87 mL in the control group. The number of blood transfusions in the study group was also lower. The patient satisfaction rate was higher in the study group than in the control group. CONCLUSION: The ERAS protocol in the perioperative period of bone tumor surgery can decrease LOS, PONV, and postoperative pain, blood transfusion and 24-h drainage, improve patient satisfaction and accelerate recovery.

3.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4382-4394, 2021 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-34984883

ABSTRACT

Some enzymes belonging to the multicopper oxidase (MCO) family can degrade the hazardous biogenic amine (BA) present in food. However, the oxidation of MCO in the process of degrading BAs may reduce its activity and stability, resulting in decreased catalytic efficiency. In this work, an MCO from Lactobacillus fermentum (MCOF) was fused with a Bacillus subtilis catalase (CAT) using different strategies and the fusion enzymes were respectively expressed in Escherichia coli BL21(DE3). The tolerance of eight fused MCOFs to H2O2 increased by 51%-68%, and the stability of CAT&MCOF increased by 17%, compared to the wild type MCOF. Using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate, the substrate affinity (Km), the catalytic efficiency (kcat/Km) and the molar specific activity of CAT&MCOF increased by 1.0-fold, 1.7-fold and 1.2-fold than those of MCOF, respectively. The stability of CAT&MCOF under acidic conditions (pH 2.5-4.5) and moderate temperatures (35-55 °C) also improved. Moreover, the degradation rates of putrescine, cadaverine and histamine catalyzed by CAT&MCOF reached 31.7%, 36.0% and 57.8%, respectively, which increased by 132.5%, 45.7% and 38.9% compared to that of MCOF. The improvement on the stability and catalytic efficiency of MCOF by fusion expression with CAT provides a good example for improving the applicability of enzymes through molecular modifications.


Subject(s)
Biogenic Amines , Hydrogen Peroxide , Cadaverine , Catalase/genetics , Escherichia coli/genetics
4.
Indian J Biochem Biophys ; 46(4): 294-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19788061

ABSTRACT

ALP2 gene encoding alkaline protcase cloned from Aureobasidium pullulans HN2-3 was ligated into the surface display plasmid and expressed in the cells of the yeast Yarrowia lipolytica. The expressed alkaline protease was immobilized on the yeast cells. The activity of the immobilized enzyme with 6 x His tag was found to be significantly higher than that of without 6 x His tag. The immobilized enzyme showed lower optimal temperature and a lower affinity for azocasein than the free enzyme purified from A. pullulans HN2-3. The thermal stability of the immobilized enzyme enhanced and the pH stability decreased, compared to that of the free enzyme.


Subject(s)
Bacterial Proteins/genetics , Endopeptidases/genetics , Yarrowia/genetics , Bacterial Proteins/chemistry , Caseins/chemistry , Cations , Cell Membrane/metabolism , Cloning, Molecular , Endopeptidases/chemistry , Enzymes, Immobilized/chemistry , Fungi/enzymology , Gene Expression Regulation, Fungal , Genetic Engineering/methods , Hydrogen-Ion Concentration , Ions , Kinetics , Models, Biological , Temperature , Yarrowia/enzymology
5.
Mar Biotechnol (NY) ; 11(1): 81-9, 2009.
Article in English | MEDLINE | ID: mdl-18629587

ABSTRACT

The alkaline protease genes (cDNAALP2 gene and ALP2 gene) were amplified from complementary DNA (cDNA) and genomic DNA of the marine yeast Aureobasidium pullulans HN2-3, respectively. An open reading frame of 1,248 bp encoding a 415-amino acid protein with a calculated molecular weight of 42.9 kDa was characterized. The ALP2 gene contained two introns, which had 54 and 52 bp, respectively. When the cDNAALP2 gene was cloned into the multiple cloning sites of the surface display vector pINA1317-YlCWP110 and expressed in cells of Yarrowia lipolytica, the cells displaying protease could form a clear zone on the double plate containing milk protein and had protease activity. The cells displaying alkaline protease were also found to be able to produce bioactive peptides from different sources of proteins. The peptides produced from single-cell protein of marine yeast strain G7a had the highest angiotensin-converting enzyme inhibitory activity, while the peptides produced from spirulina protein had the highest antioxidant activity. This is the first report that the yeast cells displaying alkaline protease were used to produce bioactive peptides.


Subject(s)
Ascomycota/enzymology , Ascomycota/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Yarrowia/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Fungal/physiology , Molecular Sequence Data
6.
Mycol Res ; 112(Pt 8): 983-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18556189

ABSTRACT

The Schizosaccharomyces pombe maltase structural gene (SPMAL1(+)) was amplified from genomic DNA of S. pombe by PCR. An open reading frame of 1740bp, encoding a putative 579 amino-acid protein with a calculated molecular mass of 67.7kDa was characterized in the genomic DNA insert of plasmid pQE30. The specific maltase activity in the induced transformants was 21 times higher than that in wild-type. However, the estimated molecular mass of the purified recombinant maltase was 44.3kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified recombinant maltase were 40 degrees C and 6, respectively. The recombinant maltase was weakly activated by Mg(2+), Ca(2+), Na(+), and Ba(2+), but was strongly inhibited by Hg(2+), Ag(+) and Cu(2+), EDTA, and PMSF. The purified maltase could actively hydrolyse rho-nitrophenyl glucoside (PNPG), maltose, dextrin, and soluble starch. The results demonstrate that maltase from S. pombe was different from that from other yeasts, and might be usefully exploited in the future by the biotechnology industry or lead to the development of new molecular genetic tools.


Subject(s)
Cloning, Molecular , Escherichia coli/metabolism , Gene Expression , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/enzymology , alpha-Glucosidases/chemistry , Amino Acid Sequence , Base Sequence , Enzyme Stability , Escherichia coli/genetics , Hydrolysis , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Substrate Specificity , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
7.
Mar Biotechnol (NY) ; 10(3): 319-27, 2008.
Article in English | MEDLINE | ID: mdl-18172722

ABSTRACT

The alkaline protease structural gene (ALP1 gene) was isolated from both the genomic DNA and cDNA of Aureobasidium pullulans 10 by inverse PCR and RT-PCR. An open reading frame of 1248 bp encoding a 415 amino-acid protein with calculated molecular weight of 42.9 kDa was characterized. The gene contained two introns, which had 54 bp and 50 bp, respectively. The promoter of ALP1 gene was located from -62 to -112 and had two CCAAT boxes and one TATA box. The terminator of ALP1gene contained the sequence with a hairpin structure (AAAAAGTT TGGTTTTT). The protein sequence deduced from ALP1 gene exhibited 55.24%, 50.35%, and 31.68% identity with alkaline proteases from Aspergillus fumigatus, Acremonium chrysogenum, and Yarrowia lipolytica, respectively. The protein was found to have the conserved serine active site and histidine active site of serine proteases in the subtilisin family. The recombinant A. pullulans alkaline protease produced in Y. lipolytica formed clear zones on the double plates with 2% casein and alkaline protease activity in the supernatant of the recombinant Y. lipolytica culture was detected, suggesting that the cloned ALP1 gene is expressed in Y. lipolytica and the expressed alkaline protease is secreted into the medium.


Subject(s)
Ascomycota/enzymology , Bacterial Proteins/genetics , Endopeptidases/genetics , Gene Expression Regulation, Fungal , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Amino Acid Sequence , Ascomycota/genetics , Bacterial Proteins/chemistry , Base Sequence , Cloning, Molecular , Endopeptidases/chemistry , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Recombinant Proteins/metabolism , Sequence Alignment , Yarrowia/genetics
8.
Appl Microbiol Biotechnol ; 77(4): 825-32, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17929010

ABSTRACT

After crude protein of the marine yeast strains maintained in this laboratory was estimated by the method of Kjehldahl, we found that the G7a strain which was identified to be a strain of Cryptococcus aureus according to the routine identification and molecular methods contained high level of protein and could grow on a wide range of carbon sources. The optimal medium for single-cell protein production was seawater containing 6.0 g of wet weight of Jerusalem artichoke extract per 100 ml of medium and 4.0 g of the hydrolysate of soybean meal per 100 ml of medium, while the optimal conditions for single-cell protein production were pH 5.0 and 28.0 degrees C. After fermentation for 56 h, 10.1 g of cell dry weight per liter of medium and 53.0 g of crude protein per 100 g of cell dry weight (5.4 g/l of medium) were achieved, leaving 0.05 g of reducing sugar per 100 ml of medium and 0.072 g of total sugar per 100 ml of medium total sugar in the fermented medium. The yeast strain only contained 2.1 g of nucleic acid per 100 g of cell dry weight, but its cells contained a large amount of C(16:0) (19.0%), C(18:0) (46.3%), and C(18:1) (33.3%) fatty acids and had a large amount of essential amino acids, especially lysine (12.6%) and leucine (9.1%), and vitamin C (2.2 mg per 100 g of cell dry weight). These results show that the new marine yeast strain was suitable for single-cell protein production.


Subject(s)
Cryptococcus/enzymology , Culture Media/chemistry , Dietary Proteins , Helianthus/metabolism , Inulin/metabolism , Cryptococcus/growth & development , Cryptococcus/isolation & purification , Seawater
9.
Mar Biotechnol (NY) ; 9(3): 343-51, 2007.
Article in English | MEDLINE | ID: mdl-17345116

ABSTRACT

The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45 degrees C, respectively. The enzyme was activated by Cu(2+) (at a concentration of 1.0 mM) and Mn(2+) and inhibited by Hg(2+), Fe(2+), Fe(3+), Zn(2+), and Co(2+). The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1-10-phenanthroline, and iodoacetic acid. The K(m) and V(max) values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 micromol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Endopeptidases/isolation & purification , Endopeptidases/metabolism , Peptides/metabolism , Yeasts/enzymology , Animals , Antioxidants/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Cations/pharmacology , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Endopeptidases/biosynthesis , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Metals/pharmacology , Peptides/genetics , Protease Inhibitors/pharmacology , Substrate Specificity , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...