Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 40(1): 293-299, 2019 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-30628286

ABSTRACT

Systematically studied the oxidation of enrofloxacin (ENR) in a nanoscale zero-valent copper (nZVC)-activated molecular oxygen system. The results show that nanoscale copper powder has a higher surface area than microscale copper powder, non-porous structure, and rough surface and exists in form of agglomerates. Nanoscale ZVC shows a superior activated performance toward molecular oxygen compared with microscale ZVC, which is due to its larger specific area and the fact that it corrodes easier. The H2O2 generated from the activation of molecular oxygen and the Cu+ released from surface corrosion form a novel Fenton-like system in which hydroxyl radicals are continuously produced, resulting in high-efficiency removal of ENR from water. The superoxide radicals produced during the reaction promote the reduction of Cu2+ to Cu+, thus speeding up the removal of ENR. The reaction conditions have a certain effect on the ENR degradation in nZVC-activated molecular oxygen systems. A higher nZVC dosage, lower ENR concentration, higher reaction temperature, and strong acidic conditions are favorable for the ENR removal.


Subject(s)
Copper , Enrofloxacin/analysis , Oxygen , Water Pollutants, Chemical/analysis , Water Purification , Hydrogen Peroxide , Oxidation-Reduction , Water
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2169-72, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-30035925

ABSTRACT

It has been acknowledged by WHO that styrene is a carcinogen which does great harm to human's health and natural environment. In recent years, given the frequency of the leakage accidents of styrene that has given rise to potential safety hazard to drinking water, the fast detection of styrene pollutant in water and treatment of accidental release are of great significance for supplying safe drinking water. Total scanning fluorescence technique was used to unravel the 3D fluorescence feature of styrene by scanning its aqueous solution. A distinct fluorescence peak of styrene located at Ex255/Em305 was detected. There was a significant linear correlation between the concentration of styrene and the value of fluorescence peak, the correlation index being 0.995 7. The color of the fluorescence peak got darker with the raise of styrene concentration. There were four conjugated double bonds existing in the structure of styrene, among which a cyclic hydrocarbon with a continuous pi bond exists in benzene ring, the other one is in vinyl. All carbon atoms that makes up the structure of styrene were in the same plane, thus styrene molecules were completely planar with certain rigidity, which is the feature of fluorescent substances. Therefore, the concentration of styrene and the pollution of water by the leakage of styrene could be easily detected with the 3D fluorescence spectra. Powdered activated carbon (PAC) had a good effect on the absorption of styrene dissolved in water. Adding PAC(180 mesh) at a dosage of 15 mg·L-1 into source water with the concentration of styrene was 0.02 mg·L-1, which is the limited value in sanitary standard for drinking water, the concentration could be reduced to 0.001 mg·L-1 and the removal rate of styrene was as high as 95.5% .

SELECTION OF CITATIONS
SEARCH DETAIL
...