Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976875

ABSTRACT

There is an urgent and unmet clinical need to develop non-pharmacological interventions for chronic pain management due to the critical side effects of opioids. Low-intensity transcranial focused ultrasound is an emerging non-invasive neuromodulation technology with high spatial specificity and deep brain penetration. Here, we developed a tightly-focused 128-element ultrasound transducer to specifically target small mouse brains, employing dynamic focus steering. We demonstrate that transcranial focused ultrasound stimulation at pain processing brain circuits can significantly alter pain-associated behaviors in mouse models in vivo. Our findings indicate that a single-session focused ultrasound stimulation to the primary somatosensory cortex (S1) significantly attenuates heat pain sensitivity in wild-type mice and modulates heat and mechanical hyperalgesia in a humanized mouse model of chronic pain in sickle cell disease. Results further revealed a sustained behavioral change associated with heat hypersensitivity by targeting deeper cortical structures (e.g., insula) and multi-session focused ultrasound stimulation to S1 and insula. Analyses of brain electrical rhythms through electroencephalography demonstrated a significant change in noxious heat hypersensitive- and chronic hyperalgesia-associated neural signals following focused ultrasound treatment. Validation of efficacy was carried out through control experiments, tuning ultrasound parameters, adjusting inter-experiment intervals, and investigating effects on age, gender, genotype, and in a head-fixed awake model. Importantly, transcranial focused ultrasound was found to be safe, causing no adverse effects on motor function and brain's neuropathology. In conclusion, the validated proof of principle experimental evidence demonstrates the translational potential of novel focused ultrasound neuromodulation for next-generation pain treatment without adverse effects.

2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328120

ABSTRACT

Low-intensity transcranial focused ultrasound (tFUS) has emerged as a powerful neuromodulation tool characterized by its deep penetration and precise spatial targeting to influence neural activity. Our study directed low-intensity tFUS stimulation onto a region of prefrontal cortex (the frontal eye field, or FEF) of a rhesus macaque to examine its impact on a remote site, the extrastriate visual cortex (area V4). This pair of cortical regions form a top-down modulatory circuit that has been studied extensively with electrical microstimulation. To measure the impact of tFUS stimulation, we recorded local field potentials (LFPs) and multi-unit spiking activities from a multi-electrode array implanted in the visual cortex. To deliver tFUS stimulation, we leveraged a customized 128-element random array ultrasound transducer with improved spatial targeting. We observed that tFUS stimulation in FEF produced modulation of V4 neuronal activity, either through enhancement or suppression, dependent on the pulse repetition frequency of the tFUS stimulation. Electronically steering the transcranial ultrasound focus through the targeted FEF cortical region produced changes in the level of modulation, indicating that the tFUS stimulation was spatially targeted within FEF. Modulation of V4 activity was confined to specific frequency bands, and this modulation was dependent on the presence or absence of a visual stimulus during tFUS stimulation. A control study targeting the insula produced no effect, emphasizing the region-specific nature of tFUS neuromodulation. Our findings shed light on the capacity of tFUS to modulate specific neural pathways and provide a comprehensive understanding of its potential applications for neuromodulation within brain networks.

3.
Nat Commun ; 13(1): 3404, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725739

ABSTRACT

Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer's disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Deep Learning , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Disease Progression , Humans , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...