Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(46): 13729-13736, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34762805

ABSTRACT

The dewetting phenomenon of a liquid film in the presence of a surfactant exists in various natural, industrial, and biomedical processes but still remains mysterious in some specific scenarios. Here, we investigate the dewetting behavior of water films initiated by surfactant-laden droplet impact and show that the maximum dewetting diameter can even reach more than 50 times that of the droplet size. We identify the S-type variation of the dewetting area and demonstrate its correlation to the dynamic surface tension reduction. From a viewpoint of energy conversion, we attribute the dewetting to the released surface energy caused by the surfactant addition and establish a linear relation between the maximum dewetting and the surfactant concentration in the film, i.e., dmax2 ∝ cfilm, which agrees well with the experiments. These results may advance the physics of liquid film dewetting triggered by surfactant injection, which shall further guide practical applications.

2.
Langmuir ; 36(14): 3713-3719, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32216255

ABSTRACT

Droplet jumping phenomenon widely exists in the fields of self-cleaning, antifrosting, and heat transfer enhancement. Numerous studies have been reported on the static droplet jumping while the rolling droplet jumping still remains unnoticed even though it is very common in practice. Here, we used the volume of fluid (VOF) method to simulate the droplet jumping induced by coalescence of a rolling droplet and a stationary one with corresponding experiments conducted to validate the correctness of the simulation model. The departure velocity of the jumping droplet was the main concerned here. The results show that when the center velocity of the rolling droplet (V0 = ωR, where ω is the angular velocity of the rolling droplet and R is the droplet radius) is fixed, the vertical departure velocity satisfies a power law which can be expressed as Vz,depar = aRb. When the droplet radius is fixed, the vertical departure velocity first decreases and then increases if the center velocity exceeds a critical value. Interestingly, the critical center velocity is demonstrated to be approximately 0.76 times the capillary-inertial velocity, corresponding to a constant Weber number of 0.58. Different from the vertical departure velocity, the horizontal departure velocity is basically proportional to the center velocity of the rolling droplet. These results deepen the understanding of the droplet jumping physics, which shall further promote related applications in engineering fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...