Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 38(6): e9657, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38342682

ABSTRACT

RATIONALE: Characterization of Regolith And Trace Economic Resources (CRATER), an Orbitrap™-based laser desorption mass spectrometry instrument designed to conduct high-precision, spatially resolved analyses of planetary materials, is capable of answering outstanding science questions about the Moon's formation and the subsequent processes that have modified its (sub)surface. METHODS: Here, we describe the baseline design of the CRATER flight model, which requires <20 000 cm3  volume, <10 kg mass, and <60 W peak power. The analytical capabilities and performance metrics of a prototype that meets the full functionality of the flight model are demonstrated. RESULTS: The instrument comprises a high-power, solid-state, pulsed ultraviolet (213 nm) laser source to ablate the surface of the lunar sample, a custom ion optical interface to accelerate and collimate the ions produced at the ablation site, and an Orbitrap mass analyzer capable of discriminating competing isobars via ultrahigh mass resolution and high mass accuracy. The CRATER instrument can measure elemental and isotopic abundances and characterize the organic content of lunar surface samples, as well as identify economically valuable resources for future exploration. CONCLUSION: An engineering test unit of the flight model is currently in development to serve as a pathfinder for near-term mission opportunities.

2.
Astrobiology ; 23(6): 657-669, 2023 06.
Article in English | MEDLINE | ID: mdl-37134219

ABSTRACT

Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.


Subject(s)
Nanoparticles , Space Flight , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Silicon/chemistry , Peptides , Nanoparticles/chemistry
3.
Astrobiology ; 22(8): 901-913, 2022 08.
Article in English | MEDLINE | ID: mdl-35507950

ABSTRACT

Astrobiology missions to ocean worlds in our solar system must overcome both scientific and technological challenges due to extreme temperature and radiation conditions, long communication times, and limited bandwidth. While such tools could not replace ground-based analysis by science and engineering teams, machine learning algorithms could enhance the science return of these missions through development of autonomous science capabilities. Examples of science autonomy include onboard data analysis and subsequent instrument optimization, data prioritization (for transmission), and real-time decision-making based on data analysis. Similar advances could be made to develop streamlined data processing software for rapid ground-based analyses. Here we discuss several ways machine learning and autonomy could be used for astrobiology missions, including landing site selection, prioritization and targeting of samples, classification of "features" (e.g., proposed biosignatures) and novelties (uncharacterized, "new" features, which may be of most interest to agnostic astrobiological investigations), and data transmission.


Subject(s)
Communication , Exobiology , Oceans and Seas , Solar System , Temperature
4.
J Mass Spectrom ; 55(1): e4454, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31663201

ABSTRACT

Since the inception of mass spectrometry more than a century ago, the field has matured as analytical capabilities have progressed, instrument configurations multiplied, and applications proliferated. Modern systems are able to characterize volatile and nonvolatile sample materials, quantitatively measure abundances of molecular and elemental species with low limits of detection, and determine isotopic compositions with high degrees of precision and accuracy. Consequently, mass spectrometers have a rich history and promising future in planetary exploration. Here, we provide a short review on the development of mass analyzers and supporting subsystems (eg, ionization sources and detector assemblies) that have significant heritage in spaceflight applications, and we introduce a selection of emerging technologies that may enable new and/or augmented mission concepts in the coming decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...