Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Commun Chem ; 6(1): 280, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104228

ABSTRACT

The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm2). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS2). High-resolution transmission electron microscopy (HRTEM) reveals face-to-face stacking between MoS2 and 2DPI within the vdWH. This stacking configuration facilitates remarkable charge transfer and noticeable n-type doping effects from monolayer 2DPI to MoS2, as corroborated by Raman spectroscopy, photoluminescence measurements, and field-effect transistor (FET) characterizations. Notably, the 2DPI-MoS2 vdWH exhibits an impressive electron mobility of 50 cm2/V·s, signifying a substantial improvement over pristine MoS2 (8 cm2/V·s). This study unveils the immense potential of integrating 2D polymers to enhance semiconductor device functionality through tailored vdWHs, thereby opening up exciting new avenues for exploring unique interfacial physical phenomena.

2.
Adv Mater ; 35(41): e2302816, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37369361

ABSTRACT

Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.

3.
Small Methods ; 7(8): e2201651, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36808898

ABSTRACT

Transition metal carbides and nitrides (MXenes) are an emerging class of 2D materials, which are attracting ever-growing attention due to their remarkable physicochemical properties. The presence of various surface functional groups on MXenes' surface, e.g., F, O, OH, Cl, opens the possibility to tune their properties through chemical functionalization approaches. However, only a few methods have been explored for the covalent functionalization of MXenes and include diazonium salt grafting and silylation reactions. Here, an unprecedented two-step functionalization of Ti3 C2 Tx MXenes is reported, where (3-aminopropyl)triethoxysilane is covalently tethered to Ti3 C2 Tx and serves as an anchoring unit for subsequent attachment of various organic bromides via the formation of CN bonds. Thin films of Ti3 C2 Tx functionalized with linear chains possessing increased hydrophilicity are employed for the fabrication of chemiresistive humidity sensors. The devices exhibit a broad operation range (0-100% relative humidity), high sensitivity (0.777 or 3.035), a fast response/recovery time (0.24/0.40 s ΔH-1 , respectively), and high selectivity to water in the presence of saturated vapors of organic compounds. Importantly, our Ti3 C2 Tx -based sensors display the largest operating range and a sensitivity beyond the state of the art of MXenes-based humidity sensors. Such outstanding performance makes the sensors suitable for real-time monitoring applications.

4.
Nat Commun ; 14(1): 760, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765051

ABSTRACT

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6--intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

5.
Biosens Bioelectron ; 222: 114942, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36493722

ABSTRACT

Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 µM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.


Subject(s)
Bioprinting , Biosensing Techniques , Zinc Oxide , Humans , Dopamine , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328815

ABSTRACT

Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.


Subject(s)
Graphite , Mesenchymal Stem Cells , Cell Adhesion , Cell Differentiation , DNA/metabolism , Endothelial Cells , Graphite/chemistry , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
7.
Angew Chem Int Ed Engl ; 60(25): 13859-13864, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33835643

ABSTRACT

Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic-inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2 ), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation-π interaction between 2DP and graphene.

8.
Nano Lett ; 21(8): 3690-3697, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33724848

ABSTRACT

The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.


Subject(s)
Graphite , Hydrogels , Electric Conductivity , Porosity
9.
Biomed Mater ; 16(1): 015008, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32688352

ABSTRACT

Brain implants are promising instruments for a broad variety of nervous tissue diseases with a wide range of applications, e.g. for stimulation, signal recording or local drug delivery. Recently, graphene-based scaffold materials have emerged as attractive candidates as neural interfaces, 3D scaffolds, or drug delivery systems due to their excellent properties like flexibility, high surface area, conductivity, and lightweight. To date, however, there is a lack of appropriate studies of the foreign body response, especially by glial cells, towards graphene-based materials. In this work, we investigated the effects of macroscopic, highly porous (>99.9%) graphene oxide (GO) and reduced graphene oxide (rGO) (conductivity ∼1 S m-1) scaffolds with tailorable macro- and microstructure on human astrocyte and microglial cell viability and proliferation as well as expression of neuroinflammation and astrogliosis associated genes in an indirect contact approach. In this in vitro model, as well as ex vivo in organotypic murine brain slices, we could demonstrate that both GO and rGO based 3D scaffolds exert slight effects on the glial cell populations which are the key players of glial scar formation. These effects were in most cases completely abolished by curcumin, a known anti-inflammatory and anti-fibrotic drug that could in perspective be applied to brain implants as a protectant.


Subject(s)
Biocompatible Materials/toxicity , Graphite/toxicity , Neuroglia/drug effects , Tissue Scaffolds/adverse effects , Tissue Scaffolds/chemistry , Animals , Astrocytes/cytology , Astrocytes/drug effects , Biocompatible Materials/chemistry , Brain/cytology , Brain/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/pharmacology , Deep Brain Stimulation/adverse effects , Drug Delivery Systems/adverse effects , Electric Conductivity , Female , Foreign-Body Reaction/chemically induced , Foreign-Body Reaction/pathology , Graphite/chemistry , Humans , In Vitro Techniques , Materials Testing , Mice , Mice, Transgenic , Neuroglia/cytology , Oxidation-Reduction , Prostheses and Implants/adverse effects
10.
Sci Rep ; 10(1): 1916, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024901

ABSTRACT

Graphene hydrophobic coatings paved the way towards a new generation of optoelectronic and fluidic devices. Nevertheless, such hydrophobic thin films rely only on graphene non-polar surface, rather than taking advantage of its surface roughness. Furthermore, graphene is typically not self-standing. Differently, carbon aerogels have high porosity, large effective surface area due to their surface roughness, and very low mass density, which make them a promising candidate as a super-hydrophobic material for novel technological applications. However, despite a few works reporting the general super-hydrophobic and lipophilic behavior of the carbon aerogels, a detailed characterization of their wetting properties is still missing, to date. Here, the wetting properties of graphene aerogels are demonstrated in detail. Without any chemical functionalization or patterning of their surface, the samples exhibit a super-lipophilic state and a stationary super-hydrophobic state with a contact angle up to 150 ± 15° and low contact angle hysteresis  ≈ 15°, owing to the fakir effect. In addition, the adhesion force of the graphene aerogels in contact with the water droplets and their surface tension are evaluated. For instance, the unique wettability and enhanced liquid absorption of the graphene aerogels can be exploited for reducing contamination from oil spills and chemical leakage accidents.

11.
Adv Mater ; 32(10): e1907857, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32003077

ABSTRACT

2D materials are important building blocks for the upcoming generation of nanostructured electronics and multifunctional devices due to their distinct chemical and physical characteristics. To this end, large-scale production of 2D materials with high purity or with specific functionalities represents a key to advancing fundamental studies as well as industrial applications. Among the state-of-the-art synthetic protocols, electrochemical exfoliation of layered materials is a very promising approach that offers high yield, great efficiency, low cost, simple instrumentation, and excellent up-scalability. Remarkably, playing with electrochemical parameters not only enables tunable material properties but also increases the material diversities from graphene to a wide spectrum of 2D semiconductors. Here, a succinct and critical survey of the recent progress in this research direction is presented, comprising the strategic design, exfoliation principles, underlying mechanisms, processing techniques, and potential applications of 2D materials. At the end of the discussion, the emerging trends, challenges, and opportunities in real practice are also highlighted.

12.
ACS Appl Mater Interfaces ; 11(47): 44652-44663, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31686498

ABSTRACT

Despite tremendous efforts toward fabrication of three-dimensional macrostructures of two-dimensional (2D) materials, the existing approaches still lack sufficient control over microscopic (morphology, porosity, pore size) and macroscopic (shape, size) properties of the resulting structures. In this work, a facile fabrication method for the wet-chemical assembly of carbon 2D nanomaterials into macroscopic networks of interconnected, hollow microtubes is introduced. As demonstrated for electrochemically exfoliated graphene, graphene oxide, and reduced graphene oxide, the approach allows for the preparation of highly porous (> 99.9%) and lightweight (<2 mg cm-3) aeromaterials with tailored porosity and pore size as well as tailorable shape and size. The unique tubelike morphology with high aspect ratio enables ultralow-percolation-threshold graphene composites (0.03 S m-1, 0.05 vol%) which even outperform most of the carbon nanotube-based composites, as well as highly conductive aeronetworks (8 S m-1, 4 mg cm-3). On top of that, long-term compression cycling of the aeronetworks demonstrates remarkable mechanical stability over 10 000 cycles, even though no chemical cross-linking is employed. The developed strategy could pave the way for fabrication of various macrostructures of 2D nanomaterials with defined shape, size, as well as micro- and nanostructure, crucial for numerous applications such as batteries, supercapacitors, and filters.

13.
Polymers (Basel) ; 11(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30960215

ABSTRACT

A trade-off between enhancement of physical properties of the final part and the processability during manufacturing always exists for the application of nanocarbon materials in thermoset-based composites. For different epoxy resins, this study elaborates the impact of nanocarbon particle type, functionalization, and filler loading on the resulting properties, i.e., rheological, electrical, thermo-mechanical, as well as the fracture toughness in mode I and mode II loading. Therefore, a comprehensive set of carbon nanoparticles, consisting of carbon black (CB), single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), few layer graphene (FLG), and electrochemically expanded graphite (ExG), in purified or functionalized configuration was introduced in various epoxy resins, with different molecular weight distributions. A novel technique to introduce sharp cracks into single-edge notched bending (SENB) fracture toughness specimens led to true values. SWCNT show highest potential for increasing electrical properties without an increase in viscosity. Functionalized MWCNT and planar particles significantly increase the fracture toughness in mode I by a factor of two.

15.
Macromol Rapid Commun ; 37(21): 1715-1722, 2016 11.
Article in English | MEDLINE | ID: mdl-27644037

ABSTRACT

Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano- and microscaled fillers, or via new chemical concepts such as self-healing materials. A capsule-based self-healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene-based filler, the latter additionally acting as a catalyst for the self-healing reaction. The concept is based on "click"-based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a "reactive glue" at the cracked site. A capsule-based healing system via a graphene-based Cu2 O (TRGO-Cu2 O-filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room-temperature self-healing within 48 h is achieved, with the investigated specimen containing TRGO-Cu2 O demonstrating significantly faster self-healing compared to homogeneous (Cu(PPh3 )3 F, Cu(PPh3 )3 Br), and heterogeneous (Cu/C) copper(I) catalysts.


Subject(s)
Click Chemistry , Graphite/chemistry , Nanocomposites/chemistry , Copper/chemistry , Organometallic Compounds/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...