Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22436825

ABSTRACT

Chrysophanol has high pharmaceutical values. However, it was difficult to use the traditional extraction method to extract high-concentration chrysophanol. Therefore, the purpose of this study is to purify and separate chrysophanol in traditional herb, Rheum Palmatum LINN, by using supercritical fluid extraction (SFE) and preparative high-performance liquid chromatography (P-HPLC) for rapid and large-scale isolation. The method is efficient for selective extraction of chrysophanol from the herbs, which have complex compositions. The extraction efficiency of chrysophanol with SFE is 25 × higher than that of boiled water extraction under the same extraction time. The optimal conditions for SFE were 210 atm and 85 °C for 30 min; for P-HPLC, a C18 column was used with a gradient elution of methanol and 1% acetic acid at a flow rate of 10 mL/min. According to (1)H NMR and LC-MS analyses, the purity of the isolated chrysophanol was as high as 99%. The recovery for chrysophanol in Rheum after SPE/PHPLC processing was in the range of 88-91.5%. Compared with other extraction and purification methods, the sequential system (SFE/P-HPLC) achieved the highest amount of extracted chrysophanol from Rheum Palmatum LINN (0.38 mg/g) and the shortest run time (3h). Hence, this rapid and environmentally friendly method can separate compounds based on polarity with high efficiencies and, coupled with P-HPLC, it may be applicable in the large-scale production of foods and medicines in the future.


Subject(s)
Anthraquinones/isolation & purification , Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Drugs, Chinese Herbal/chemistry , Rheum/chemistry , Cassia/chemistry , Reproducibility of Results
2.
Environ Sci Pollut Res Int ; 19(2): 303-12, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21739180

ABSTRACT

INTRODUCTION: This study presents bihourly, seasonal, and yearly concentration changes in volatile organic compounds (VOCs) in the inlet and effluent water of the wastewater treatment plant (WWTP) of a high-technology science park (HTIP) in Taiwan, with the VOC amounts at different sites correlated geologically. MATERIALS AND METHODS: This research adopted a combination of two systems, solid-phase microextraction with a gas chromatography/flame ionization detector and an assembly of purge and trap coupled with gas chromatography/mass spectrometry, to monitor polar and nonpolar VOCs in wastewater. This paper investigated the total VOCs, acetone, isopropyl alcohol (IPA), and dimethylsulfide (DMS) concentrations in real water samples collected in the ambient area of the HTIP. RESULTS AND DISCUSSION: The major contents of VOCs measured in the effluent of the WWTP in the HTIP and the surrounding river region were DMS (14-176 ppb), acetone (5-95 ppb), and IPA (15-316 ppb). In comparison with the total VOCs in the inlet wastewater of the WWTP, no corresponding relationship for total VOC concentration in the wastewater was observed between the inlet water and effluent water of the WWTP. CONCLUSIONS: The peak VOC concentrations appeared in the third season, and the correlation of different VOC amounts reflects the production situation of the factories. In addition, VOC concentrations at different sites indicate that the Ke-Ya River is seemingly an effective channel for transporting wastewater to its final destination. The data are good indications for the management of environmental pollution near the HTIP.


Subject(s)
Bays , Environmental Monitoring/methods , Volatile Organic Compounds/analysis , Water Pollutants/analysis , 2-Propanol/analysis , Acetone/analysis , Flame Ionization/methods , Gas Chromatography-Mass Spectrometry , Industry , Rivers , Seasons , Taiwan , Time Factors , Waste Disposal, Fluid
3.
Talanta ; 80(2): 903-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19836571

ABSTRACT

An automatic sampling device, i.e., process sampling module (PSM), connected with a purge and trap-GC-FID system has been developed for real-time monitoring of VOCs in wastewater. The system was designed to simultaneously monitor 17 compounds, including one polar compound, i.e., acetone, and 16 non-polar compounds. The trapping tube is packed with two adsorbents, Carbopack B and Carbosieve III, to trap target compounds. For the purpose of in situ monitoring, the flush valve of the sampling tube is composed of two two-way valves and a time controller to prevent absorption interference of the residue. The optimal conditions for the analytical system include a 12 min purge time at a temperature of 60 degrees C, and 4 min of desorption time with a desorption temperature of 260 degrees C. Good chromatograms have been obtained with the analytical system even if a cryogenic device and de-misting were not used. The relative standards deviation (RSD) of the system is between 2% and 13.4%, and accuracies between 0.3 and 23.5% have been achieved. The detection limits of the method range from 0.32 to 2.39 ppb. In this system, the four parts, i.e., PSM, P&T, GC, and FID, were simple, reliable and rugged. Also, the interface of these four parts was simple and dependable.


Subject(s)
Chromatography, Gas/methods , Environmental Monitoring/methods , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Acetone/analysis , Adsorption , Chloroform/analysis , Chromatography, Gas/instrumentation , Reproducibility of Results , Toluene/analysis
4.
Sci Total Environ ; 399(1-3): 41-9, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18479737

ABSTRACT

This study describes continuous monitoring of the volatile organic air pollutants, acetone and toluene, in Hsinchu Science Park (HSP) during an occurrence of inclement weather, i.e., a typhoon. Using a lab-designed sampling system coupled with a continuous automated GC-MS analysis system, a total of 53 polar and nonpolar compounds were identified and quantified. The concentration of polar compounds dropped sharply from 41.4 ppbv before the typhoon to the stage of no detection during the storm, but rose again after the typhoon. The amount of nonpolar compounds remained unaffected during the storm. The polar compounds were more affected by both the rainfall and wind than were the nonpolar compounds. The severity of air pollution strongly correlates with the concentration of acetone released into the atmosphere by a wastewater treatment facility. The system used in this study has been proved reliable while working in inclement weather condition; in addition, the results can probably be applied in the monitoring of the environment during the typhoon season in high-tech research areas.


Subject(s)
Acetone/analysis , Air Pollutants/analysis , Air/analysis , Disasters , Environmental Monitoring , Toluene/analysis , Waste Disposal, Fluid , Air Movements , Gas Chromatography-Mass Spectrometry , Risk Assessment , Seasons , Taiwan , Volatilization , Weather
5.
J Chromatogr A ; 1003(1-2): 179-87, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12899307

ABSTRACT

A capillary electrophoretic method for the analysis of 12 commonly found derivatives and isomers of benzoate and phthalate, including p-toluic acid, p-acetamido and p-hydroxy derivatives of benzoic acid, salicylic acid and its acetyl ester, 2- and 4-isomers of carboxybenzaldehyde, meta-, para-, and ortho-isomers of phthalic acid, and monomethyl terephthalic acid was developed. Capillary electrophoresis (CE) was performed in the free zone electrophoresis mode. Performing CE in 10 mM phosphate buffer, pH 7.0 could separate most of the benzoic acid derivatives except the structural or positional isomers. The positional isomers of phthalic acids could be completely separated with co-addition of alpha- and beta-cyclodextrins. Addition of poly(ethylene glycol) 600 (4%) could further resolve some structural isomers. The CE method developed here is rapid, i.e. complete separation could be achieved in less than 8 min for the nine monoanionic benzoate derivatives and in less than 14 min for the three dianionic phthalate isomers. The new method has good precision and linearity and can be readily applied to real samples for quantitative analysis. It is sensitive and can detect sub-ppm (w/w) level of impurity in real terephthalic samples.


Subject(s)
Benzoates/analysis , Electrophoresis, Capillary/methods , Phthalic Acids/analysis , alpha-Cyclodextrins , beta-Cyclodextrins , Benzoates/chemistry , Benzoates/isolation & purification , Cyclodextrins , Hydrogen-Ion Concentration , Indicators and Reagents , Isomerism , Phthalic Acids/chemistry , Polyethylene Glycols , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...