Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38585714

ABSTRACT

Chemical modifications in mRNAs such as pseudouridine (psi) can regulate gene expression, although our understanding of the functional impact of individual psi modifications, especially in neuronal cells, is limited. We apply nanopore direct RNA sequencing to investigate psi dynamics under cellular perturbations in SH-SY5Y cells. We assign sites to psi synthases using siRNA-based knockdown. A steady-state enzyme-substrate model reveals a strong correlation between psi synthase and mRNA substrate levels and psi modification frequencies. Next, we performed either differentiation or lead-exposure to SH-SY5Y cells and found that, upon lead exposure, not differentiation, the modification frequency is less dependent on enzyme levels suggesting translational control. Finally, we compared the plasticity of psi sites across cellular states and found that plastic sites can be condition-dependent or condition-independent; several of these sites fall within transcripts encoding proteins involved in neuronal processes. Our psi analysis and validation enable investigations into the dynamics and plasticity of RNA modifications.

2.
ACS Sens ; 8(7): 2563-2571, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37368999

ABSTRACT

Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).


Subject(s)
Virus Diseases , Viruses , Humans , In Situ Hybridization, Fluorescence/methods , Viruses/genetics , Polymerase Chain Reaction , Virion
3.
Front Physiol ; 11: 605398, 2020.
Article in English | MEDLINE | ID: mdl-33424628

ABSTRACT

Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the "neurovascular unit," is the brain's multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.

4.
J Biotechnol ; 281: 106-114, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29986837

ABSTRACT

As a bioactive triterpenoid, squalene is widely used in the food industry, cosmetics, and pharmacology. Squalene's major commercial sources are the liver oil of deep-sea sharks and plant oils. In this study, we focused on the enhancement of squalene biosynthesis in Yarrowia lipolytica, with particular attention to the engineering of acetyl-CoA metabolism based on genome-scale metabolic reaction network analysis. Although the overexpression of the rate-limiting endogenous ylHMG1 (3-hydroxy-3-methylglutaryl-CoA reductase gene) could improve squalene synthesis by 3.2-fold over that by the control strain, the availability of the key intracellular precursor, acetyl-CoA, was found to play a more significant role in elevating squalene production. Analysis of metabolic networks with the newly constructed genome-scale metabolic model of Y. lipolytica iYL_2.0 showed that the acetyl-CoA pool size could be increased by redirecting carbon flux of pyruvate dehydrogenation towards the ligation of acetate and CoA or the cleavage of citrate to form oxaloacetate and acetyl-CoA. The overexpression of either acetyl-CoA synthetase gene from Salmonella enterica (acs*) or the endogenous ATP citrate lyase gene (ylACL1) resulted in a more than 50% increase in the cytosolic acetyl-CoA level. Moreover, iterative chromosomal integration of the ylHMG1, asc*, and ylACL1 genes resulted in a significant improvement in squalene production (16.4-fold increase in squalene content over that in the control strain). We also found that supplementation with 10 mM citrate in a flask culture further enhanced squalene production to 10 mg/g DCW. The information obtained in this study demonstrates that rationally engineering acetyl-CoA metabolism to ensure the supply of this key metabolic precursor is an efficient strategy for the enhancement of squalene biosynthesis.


Subject(s)
Acetyl Coenzyme A/metabolism , Squalene/metabolism , Yarrowia/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Acetate-CoA Ligase/genetics , Acetates/pharmacology , Citrates/pharmacology , Metabolic Engineering , Salmonella enterica/genetics , Yarrowia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...